[1]庄清渠,王金平.四阶常微分方程的Birkhoff配点法[J].华侨大学学报(自然科学版),2018,39(2):306-311.[doi:10.11830/ISSN.1000-5013.201707005]
 ZHUANG Qingqu,WANG Jinping.Birkhoff Collocation Method for Fourth-Order Ordinary Differential Equations[J].Journal of Huaqiao University(Natural Science),2018,39(2):306-311.[doi:10.11830/ISSN.1000-5013.201707005]
点击复制

四阶常微分方程的Birkhoff配点法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第2期
页码:
306-311
栏目:
出版日期:
2018-03-20

文章信息/Info

Title:
Birkhoff Collocation Method for Fourth-Order Ordinary Differential Equations
文章编号:
1000-5013(2018)02-0306-06
作者:
庄清渠 王金平
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
ZHUANG Qingqu WANG Jinping
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
四阶常微分方程 Birkhoff配点法 Legendre配点法 代数方程组
Keywords:
fourth-order ordinary differential equation Birkhoff collocation method Legendre collocation method algebraic equation
分类号:
O241.8
DOI:
10.11830/ISSN.1000-5013.201707005
文献标志码:
A
摘要:
提出求解四阶常微分方程的Birkhoff配点法.通过构造满足边界条件的Birkhoff插值基函数,得到具有稳定条件数的代数方程组.在数值算例中,通过与一类Legendre 配点法的数值结果进行比较.结果表明:Birkhoff配点法的有效性和高精度.
Abstract:
The paper presents a Birkhoff collocation method for solving the fourth-order differential equation. The Birkhoff interpolation basis functions satisfying the boundary conditions are constructed, which leads to algebraic equations with stable condition numbers. Numerical results indicate that the Birkhoff collocation method is of high accuracy and effectiveness comparing with a kind of Legendre collocation method.

参考文献/References:

[1] CAHN J W,HILLEARD J E.Free energy of a nonuniform system(Ⅰ): Interfacial free energy[J].Journal of Chemical Physics,1958,28(2):258-267.DOI:10.1063/1.1744102.
[2] MICHELSON D M,SIVASHINSKY G I.Nonlinear analysis of hydrodynamic instability in laminar flames(Ⅱ): Numerical experiments[J].Acta Astronautica,1977,4(11/12):1207-1221.DOI:10.1016/0094-5765(77)90097-2.
[3] QUANG A D,LUAN V T,LONG Dangquang.Iterative method for solving a fourth order differential equation with nonlinear boundary condition[J].Applied Mathematical Sciences,2010,4(70):3467-3481.
[4] ZHUANG Qingqu.A legendre spectral-element method for the one-dimensional fourth-order equations[J].Applied Mathematics and Computation,2011,218(7):3587-3595.DOI:10.1016/j.amc.2011.08.107.
[5] FUNARO D,HEINRICHS W.Some results about the pseudospectral approximation of one-dimensional fourth-order problems[J].Numerische Mathematik,1990,58(1):399-418.DOI:10.1007/BF01385633.
[6] MALEK A,PHILLIPS T N.Pseudospectral collocation methods for fourth-order differential equations[J].Ima Journal of Numerical Analysis,1994,15(4):523-553.DOI:10.1093/imanum/15.4.523.
[7] NOOR M A,MOHYUD-DIN S T.An efficient method for fourth-order boundary value problems[J].Computers and Mathematics with Applications,2007,54(7/8):1101-1111.DOI:10.1016/j.camwa.2006.12.057.
[8] SUN Tao,YI Lijun.A new Galerkin spectral element method for fourth-order boundary value problems[J].International Journal of Computer Mathematics,2015,93(6):915-928.DOI:10.1080/00207160.2015.1011142.
[9] DANG-VU H,DELCARTE C.An accurate solution of the poisson equation by the chebyshev collocation method[J].Journal of Computational Physics,1993,104(1):211-220.DOI:10.1006/jcph.1993.1021.
[10] ZHU Huajun,TANG Lingyan,SONG Songhe,et al.Symplectic wavelet collocation method for Hamiltonian wave equations[J].Journal of Computational Physics,2010,229(7):2550-2572.DOI:10.1016/j.jcp.2009.11.042.
[11] SHEN Jie,TANG Tao.Spectral and high-order methods with applications[M].Beijing:Science Press of China,2006.
[12] COSTABILE F,NAPOLI A.A method for polynomial approximation of the solution of general second order BVPs[J].Far East Journal of Applied Mathematics,2006,25(3):289-305.DOI:10.1016/j.cam.2006.10.081.
[13] COSTABILE F,NAPOLI A.A class of collocation methods for numerical integration of initial value problems[J].Computers and Mathematics with Applications,2011,62(8):3221-3235.DOI:10.1016/j.camwa.2011.08.036.
[14] COSTABILE F,NAPOLI A.Collocation for high order differential equations with two-points Hermite boundary conditions[J].Applied Numerical Mathematics,2014,87:157-167.DOI:10.1016/j.apnum.2014.09.008.
[15] BOOR C D,SWARTZ B.Collocation at Gaussian points[J].Siam Journal on Numerical Analysis,1973,10(4):582-606.DOI:10.1137/0710052.
[16] COSTABILE F,NAPOLI A.Collocation for high-order differential equations with lidstone boundary conditions[J].Journal of Applied Mathematics,2012,2012(1110-757X):701-708.DOI:10.1155/2012/120792.
[17] COSTABILE F A,LONGO E.A Birkhoff interpolation problem and application[J].Calcolo,2010,47(1):49-63.DOI:10.1007/s10092-009-0014-9.
[18] GUANG Shiying.Theory of Birkhoff interpolation[M].New York:Nova Publishers,2003.
[19] LORENTZ G G,JETTER K,RIEMENSCHNEIDER S D.Birkhoff interpolation[M].Oxford:Cambridge University Press,1984.
[20] WANG Lilian,SAMSON M D,ZHAO Xiaodan.A well-conditioned collocation method using a pseudospectral integration matrix[J].SIAM Journal on Scientific Computing,2014,36(3):A907-A929.DOI:10.1137/130922409.
[21] SHEN Jie,TANG Tao,WANG Lilian.Spectral methods: Algorithms, analysis and applications[M].Berlin: Springer-Verlag,2011.

备注/Memo

备注/Memo:
收稿日期: 2017-07-02
通信作者: 庄清渠(1980-),男,副教授,博士,主要从事微分方程数值解法的研究.E-mail:qqzhuang@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11501224); 华侨大学中青年教师科研提升资助计划项目(ZQN-PY201)
更新日期/Last Update: 2018-03-20