[1]舒忠磊,常方强,林从谋.统一强度理论下小净距隧道围岩塑性区新解[J].华侨大学学报(自然科学版),2018,39(1):31-36.[doi:10.11830/ISSN.1000-5013.201702062]
 SHU Zhonglei,CHANG Fangqiang,LIN Congmou.New Solution of Small Spacing Tunnels’ Plastic Zone Under Unified Strength Theory[J].Journal of Huaqiao University(Natural Science),2018,39(1):31-36.[doi:10.11830/ISSN.1000-5013.201702062]
点击复制

统一强度理论下小净距隧道围岩塑性区新解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第1期
页码:
31-36
栏目:
出版日期:
2018-01-17

文章信息/Info

Title:
New Solution of Small Spacing Tunnels’ Plastic Zone Under Unified Strength Theory
文章编号:
1000-5013(2018)01-0031-06
作者:
舒忠磊 常方强 林从谋
华侨大学 土木工程学院, 福建 厦门 361021
Author(s):
SHU Zhonglei CHANG Fangqiang LIN Congmou
College of Civil Engineering, Huaqiao University, Xiamen 361021, China
关键词:
小净距隧道 塑性区贯穿半径 复变函数理论 统一强度理论
Keywords:
small spacing tunnel connected radius of the rock plastic zone complex function theory unified strength theory
分类号:
TU452
DOI:
10.11830/ISSN.1000-5013.201702062
文献标志码:
A
摘要:
将小净距隧道中岩柱塑性区不重叠的极限塑性区半径定义为塑性区贯穿半径,考虑中间主应力的影响,采用统一强度准则和Schwarz交替法,对小净距隧道的弹塑性状态进行分析,推导小净距隧道塑性区半径的解析表达式.通过算例,分析中间主应力、内摩擦角和黏聚力对理论解的影响.结果表明:当两隧道净距大于2.3倍的开挖半径时,两隧道之间的相互作用较小,塑性区半径趋于一个稳定值,稳定值比单孔隧道塑性区半径大17.7%,可近似按照单孔隧道进行处理;小净距隧的塑性区贯穿半径随着统一强度参数、内摩擦角和黏聚力的增大而减小;与同不考虑中间主应力作用相比,考虑中间主应力作用的塑性区贯穿半径减小9.19%~20.71%,充分发挥围岩的强度性能.
Abstract:
The radius of the limit plastic zone without overlapping the plastic zone in the small spacing tunnel is defined as connected radius of the rock plastic zone. Taking account of the influence of intermediate principal stress, the small spacing tunnels’ elastic-plastic state is analyzed by the unified strength theory and Schwarz alternating method, and the analytical expression of small spacing tunnels’ plastic zone is deduced. Through the example, the influence of the intermediate principal stress, internal friction angle and cohesion on the theoretical solution is analyzed. The analysis result shows that: when the net space between two tunnels is 2.3 times greater than excavation radius of two tunnels, the interaction between two tunnels is small and the radius of the plastic zone tends to be a stable value. The stability value is 17.7% greater than the radius of the plastic zone of a single-hole tunnel, each of two tunnels can be treated as a single-hole tunnel. The connected radius of the rock plastic zone in small spacing tunnels decreases with increase of the unified strength parameters, the cohesive force and the angle of internal friction. The connected radius of the rock plastic zone in small spacing tunnels considering the intermediate principal stress’ effect decreases by 9.19%-20.71%, so consideration of the intermediate principal stress is conducive to the exertion of the surrounding rock strength.

参考文献/References:

[1] BARLA G,OTTOVIANI M.Stresses and displacements around two adjacent circular openings near to the ground surface[C]//Proceedings of the 3rd International Congress on Rock Mechanics.Denver:Rock Mechanics,1974:975.
[2] 胡元芳.小线间距城市双线隧道围岩稳定性分析[J].岩石力学与工程学报,2002,21(9):1335-1338.DOI:10.3321/j.issn:1000-6915.2002.09.011.
[3] 张桂生,冯文件,刘新荣,等.Ⅴ级围岩下小净距隧道合理净距的探讨[J].地下空间与工程学报,2009,5(3):582-586.DOI:10.3969/j.issn.1673-0836.2009.03.034.
[4] 胡居义.确定小净距隧道合理净距的数值模拟研究[J].公路隧道,2007,15(4):26-29.
[5] 门妮,代树林,佴磊.考虑围岩破坏条件时优化小净距隧道最小净距的研究[J].探矿工程(岩土钻掘工程),2008,52(8):73-76.DOI:10.3969/j.issn.1672-7428.2008.08.023.
[6] 许东俊,耿乃光.岩石强度随中间主应力变化规律[J].固体力学学报,1985,6(1):72-80.
[7] 宋伟超,高永涛,吴顺川,等.基于复变函数理论和D-P屈服准则的并行隧道合理间距[J].工程科学学报,2016,62(2):291-298.DOI:10.13374/j.issn2095-9389.2016.02.020.
[8] 马青,赵均海,魏雪英.基于统一强度理论的巷道围岩抗力系数研究[J].岩土力学,2011,30(11):3393-3398.DOI:10.3969/j.issn.1000-7598.2009.11.029.
[9] 宋万鹏,吴立,李波,等.统一强度理论下非均匀应力隧洞围岩抗力系数[J].科学技术与工程,2014,16(3):150-154.DOI:10.3969/j.issn.1671-1815.2014.16.027.
[10] MOGILEVSKAYASG S G,CROUCH S L.A Galerkin boundary integral method for multiple circular elastic inclusions with homogeneously imperfect interfaces[J].Int J Solids Struct,2002,39(18):4723.
[11] ADDENBROOK T I,POTTS D M.Twin tunnel interaction: Surface and subsurface effects[J].Int J Geomech,2001,1(2):249.
[12] 吕爱钟,张路青.地下巷道力学分析的复变函数方法[M].北京:科学出版社,2007.
[13] 俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998:187-246.
[14] 张小波,赵光明,孟祥瑞.基于Drucker-Prager屈服准则的圆形巷道围岩弹塑性分析[J].煤炭学报,2013,38(增刊1):31-37.DOI:10.13225/j.cnki.jccs.2013.s1.021.
[15] 杨转运,龚雄文,王羽,等.小净距并行隧道施工技术要点[J].隧道建设,2005(2):40-43.DOI:10.3969/j.issn.1672-741X.2005.02.014.
[16] 林大炜,林从谋,黄逸群,等.小净距2扩4隧道变形规律的BP小波神经预测[J].华侨大学学报(自然科学版),2014,35(2):207-211.DOI:10.11830/issn.1000-5013.2014.02.0207.
[17] 郑强,林从谋,孟凡兵.采用统一强度理论的锚喷支护围岩弹塑性统一解[J].华侨大学学报(自然科学版),2011,32(3):326-331.DOI:10.11830/issn.1000-5013.2011.03.0326.
[18] 晏莉,阳军生,张学民,等.水平互层岩体并行隧道中间岩柱稳定分析[J].岩石力学与工程学报,2009,28(增刊1):2898-2904.DOI:10.3321/j.issn:1000-6915.2009.z1.046.
[19] 张小波,赵光明,孟祥瑞.基于岩石非线性统一强度准则的非均匀应力场中圆形巷道围岩塑性区分析[J].安全与环境学报,2013,13(3):202-206.DOI:10.3969/j.issn.1009-6094.2013.03.045.

相似文献/References:

[1]郑强,林从谋,林丽群,等.小净距隧道爆破山顶石房楼层振动效应[J].华侨大学学报(自然科学版),2011,32(1):81.[doi:10.11830/ISSN.1000-5013.2011.01.0081]
 ZHENG Qiang,LIN Cong-mou,LIN Li-qun,et al.Effect of Small-Distance Tunnel Blasting on Hilltop Stone Building Vibration[J].Journal of Huaqiao University(Natural Science),2011,32(1):81.[doi:10.11830/ISSN.1000-5013.2011.01.0081]

备注/Memo

备注/Memo:
收稿日期: 2017-02-24
通信作者: 常方强(1980-),男,副教授,博士,主要从事环境岩土灾害的研究.E-mail:malcme@126.com.
基金项目: 国家自然科学基金资助项目(41306051); 福建省自然科学基金资助项目(2014J01197, 2015J01625)
更新日期/Last Update: 2018-01-20