参考文献/References:
[1] 庄梁,林灿煌,孙洪飞.受扰线性不确定系统鲁棒H∞混合镇定[J].华侨大学学报(自然科学版),2017,38(2):147-152.DOI:10.11830/ISSN.1000-5013.201702003.
[2] 朱剑峰.调和K-拟共形映照下Heinz不等式的精确估计[J].华侨大学学报(自然科学版),2014,35(3):354-357.DOI:10.11830/ISSN.1000-5013.2014.03.0354.
[3] KLAPPER A.Improved multi-covering bounds from linear inequalities and supercodes[J].IEEE Transactions on Information Theory,2004,50(3):532-536.DOI:10.1109/TIT.2004.825504.
[4] GUO Dongsheng,ZHANG Yunong.Acceleration-level inequality-based MAN scheme for obstacle avoidance of redundant robot manipulators[J].IEEE Transactions on Industrial Electronics,2014,61(12):6903-6914.DOI:10.1109/TIE.2014.2331036.
[5] GUO Dongsheng,LI Kene.Acceleration-level obstacle-avoidance scheme for motion planning of redundant robot manipulators[J].Proceedings of IEEE International Conference on Robotics and Biomimetics.Qingdao:IEEE Press,2016:1313-1318.DOI:10.1109/ROBIO.2016.7866508.
[6] XIAO Lin,ZHANG Yunong.Dynamic design, numerical solution and effective verification of acceleration-level obstacle avoidance scheme for robot manipulators[J].International Journal of Systems Science,2016,47(4):932-945.DOI:10.1080/00207721.2014.909971.
[7] YANG Kai,MURTY K G,MANGASARIAN O L.New iterative methods for linear inequalities[J].Journal of Optimization Theory and Applications,1992,72(1):163-185.DOI:10.1007/BF00939954.
[8] CICHOCKI A,BARGIELA A.Neural networks for solving linear inequality systems[J].Parallel Computing,1997,22(11):1455-1475.DOI:10.1016/S0167-8191(96)00065-8.
[9] LABONTE G.On solving systems of linear inequalities with artificial neural network[J].IEEE Transactions on Neural Networks,1997,8(3):590-600.DOI:10.1109/72.572098.
[10] XIA Youshen,WANG Jun,HUNG D L.Recurrent neural networks for solving linear inequalities and equations[J].IEEE Transactions on Circuits and Systems Ⅰ,1999,46(4):452-462.DOI:10.1109/81.754846.
[11] XIAO Lin,ZHANG Yunong.Zhang neural network versus gradient neural network for solving time-varying linear inequalities[J].IEEE Transactions on Neural Networks,2011,22(10):1676-1684.DOI:10.1109/TNN.2011.2163318.
[12] GUO Dongsheng,ZHANG Yunong.A new variant of the Zhang neural network for solving online time-varying linear inequalities[J].Proceedings of the Royal Society A,2012,468(2144):2255-2271.DOI:10.1098/rspa.2011.0668.
[13] GUO Dongsheng,ZHANG Yunong.ZNN for solving online time-varying linear matrix-vector inequality via equality conversion[J].Applied Mathematics and Computation,2015,259(C):327-338.DOI:10.1016/j.amc.2015.02.060.
[14] GUO Dongsheng,ZHANG Yunong.Zhang neural network for online solution of time-varying linear matrix inequality aided with an equality conversion[J].IEEE Transactions on Neural Networks and Learning Systems,2014,25(2):370-382.DOI:10.1109/TNNLS.2013.2275011.
[15] MATHEWS J H,FINK F D.Numerical methods using MATLAB[M].4th ed.New Jersey:Prentice Hall,2004:1-696.
[16] 张雨浓,郭东生,徐思洪,等.未知目标函数之一阶数值微分公式验证与实践[J].甘肃科学学报,2009,21(1):13-18.DOI:10.3969/j.issn.1004-0366.2009.01.005.
[17] 张雨浓,侯占伟,郭东生.基于前向差分的一阶数值微分公式验证与实践[J].数学的实践与认识,2012,42(3):199-204.DOI:10.3969/j.issn.1000-0984.2012.03.031.
[18] MITRA S K.Digital signal processing: A computer-based approach[M].3rd ed.Beijing:Tsinghua University Press,2006.
[19] GRIFFITHS D F,HIGHAM D J.Numerical methods for ordinary differential equations: Initial value problems[M].London:Springer-Verlag London Ltd,2010.
相似文献/References:
[1]刘钰佳,谭鸽伟.改进的自适应最优低秩信道估计算法[J].华侨大学学报(自然科学版),2016,37(2):179.[doi:10.11830/ISSN.1000-5013.2016.02.0179]
LIU Yujia,TAN Gewei.Improved Adaptive Optimal Low-Rank Channel Estimation Algorithm[J].Journal of Huaqiao University(Natural Science),2016,37(5):179.[doi:10.11830/ISSN.1000-5013.2016.02.0179]