[1]郭东生,徐凤.求解时变线性不等式离散算法的设计与分析[J].华侨大学学报(自然科学版),2017,38(5):732-736.[doi:10.11830/ISSN.1000-5013.201612043]
 GUO Dongsheng,XU Feng.Design and Analysis of Discrete Algorithm for Time-Varying Linear Inequality Solving[J].Journal of Huaqiao University(Natural Science),2017,38(5):732-736.[doi:10.11830/ISSN.1000-5013.201612043]
点击复制

求解时变线性不等式离散算法的设计与分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第5期
页码:
732-736
栏目:
出版日期:
2017-09-20

文章信息/Info

Title:
Design and Analysis of Discrete Algorithm for Time-Varying Linear Inequality Solving
文章编号:
1000-5013(2017)05-0732-05
作者:
郭东生 徐凤
华侨大学 信息科学与工程学院, 福建 厦门 361021
Author(s):
GUO Dongsheng XU Feng
College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
线性不等式 时变 离散算法 欧拉差分公式 稳态误差
Keywords:
linear inequality time-varying discrete algorithm Euler’s difference formula steady-state residual error
分类号:
O221.2;TP183
DOI:
10.11830/ISSN.1000-5013.201612043
文献标志码:
A
摘要:
提出一种用于求解时变线性不等式的数值算法.通过引入一个时变向量(其每个元素都大于或等于零),将时变线性不等式转化为一个时变矩阵向量方程,并给出用于求解该方程的连续时间模型(即神经网络).采用欧拉差分公式将其离散化,推导得到相应的离散算法,并通过理论分析和数值实验验证该离散算法的有效性.结果表明:所提出的离散算法的稳态误差(SSRE)具有O(τ2)的变化规律,当τ的数值减小10倍,算法的稳态误差可减小100倍.
Abstract:
A numerical algorithm for time-varying linear inequality solving is proposed. By introducing a time-varying vector(of which each element is greater than or equal to zero), we convert the time-varying linear inequality to a time-varying matrix-vector equation. A continuous-time model(i.e., the neural network)is then presented to solve such an equation. Using Euler’s difference formula to discretize the continuous-time model, we propose the corresponding discrete algorithm. Both theoretical analysis and numerical results further substantiate the efficacy of such algorithm. These results also indicate that the steady-state residual error(SSRE)of the proposed discrete algorithm changes in an O(τ2)manner with being τ the sampling gap; when the τ value decreases by 10 times, the SSRE reduces by 100 times.

参考文献/References:

[1] 庄梁,林灿煌,孙洪飞.受扰线性不确定系统鲁棒H混合镇定[J].华侨大学学报(自然科学版),2017,38(2):147-152.DOI:10.11830/ISSN.1000-5013.201702003.
[2] 朱剑峰.调和K-拟共形映照下Heinz不等式的精确估计[J].华侨大学学报(自然科学版),2014,35(3):354-357.DOI:10.11830/ISSN.1000-5013.2014.03.0354.
[3] KLAPPER A.Improved multi-covering bounds from linear inequalities and supercodes[J].IEEE Transactions on Information Theory,2004,50(3):532-536.DOI:10.1109/TIT.2004.825504.
[4] GUO Dongsheng,ZHANG Yunong.Acceleration-level inequality-based MAN scheme for obstacle avoidance of redundant robot manipulators[J].IEEE Transactions on Industrial Electronics,2014,61(12):6903-6914.DOI:10.1109/TIE.2014.2331036.
[5] GUO Dongsheng,LI Kene.Acceleration-level obstacle-avoidance scheme for motion planning of redundant robot manipulators[J].Proceedings of IEEE International Conference on Robotics and Biomimetics.Qingdao:IEEE Press,2016:1313-1318.DOI:10.1109/ROBIO.2016.7866508.
[6] XIAO Lin,ZHANG Yunong.Dynamic design, numerical solution and effective verification of acceleration-level obstacle avoidance scheme for robot manipulators[J].International Journal of Systems Science,2016,47(4):932-945.DOI:10.1080/00207721.2014.909971.
[7] YANG Kai,MURTY K G,MANGASARIAN O L.New iterative methods for linear inequalities[J].Journal of Optimization Theory and Applications,1992,72(1):163-185.DOI:10.1007/BF00939954.
[8] CICHOCKI A,BARGIELA A.Neural networks for solving linear inequality systems[J].Parallel Computing,1997,22(11):1455-1475.DOI:10.1016/S0167-8191(96)00065-8.
[9] LABONTE G.On solving systems of linear inequalities with artificial neural network[J].IEEE Transactions on Neural Networks,1997,8(3):590-600.DOI:10.1109/72.572098.
[10] XIA Youshen,WANG Jun,HUNG D L.Recurrent neural networks for solving linear inequalities and equations[J].IEEE Transactions on Circuits and Systems Ⅰ,1999,46(4):452-462.DOI:10.1109/81.754846.
[11] XIAO Lin,ZHANG Yunong.Zhang neural network versus gradient neural network for solving time-varying linear inequalities[J].IEEE Transactions on Neural Networks,2011,22(10):1676-1684.DOI:10.1109/TNN.2011.2163318.
[12] GUO Dongsheng,ZHANG Yunong.A new variant of the Zhang neural network for solving online time-varying linear inequalities[J].Proceedings of the Royal Society A,2012,468(2144):2255-2271.DOI:10.1098/rspa.2011.0668.
[13] GUO Dongsheng,ZHANG Yunong.ZNN for solving online time-varying linear matrix-vector inequality via equality conversion[J].Applied Mathematics and Computation,2015,259(C):327-338.DOI:10.1016/j.amc.2015.02.060.
[14] GUO Dongsheng,ZHANG Yunong.Zhang neural network for online solution of time-varying linear matrix inequality aided with an equality conversion[J].IEEE Transactions on Neural Networks and Learning Systems,2014,25(2):370-382.DOI:10.1109/TNNLS.2013.2275011.
[15] MATHEWS J H,FINK F D.Numerical methods using MATLAB[M].4th ed.New Jersey:Prentice Hall,2004:1-696.
[16] 张雨浓,郭东生,徐思洪,等.未知目标函数之一阶数值微分公式验证与实践[J].甘肃科学学报,2009,21(1):13-18.DOI:10.3969/j.issn.1004-0366.2009.01.005.
[17] 张雨浓,侯占伟,郭东生.基于前向差分的一阶数值微分公式验证与实践[J].数学的实践与认识,2012,42(3):199-204.DOI:10.3969/j.issn.1000-0984.2012.03.031.
[18] MITRA S K.Digital signal processing: A computer-based approach[M].3rd ed.Beijing:Tsinghua University Press,2006.
[19] GRIFFITHS D F,HIGHAM D J.Numerical methods for ordinary differential equations: Initial value problems[M].London:Springer-Verlag London Ltd,2010.

相似文献/References:

[1]刘钰佳,谭鸽伟.改进的自适应最优低秩信道估计算法[J].华侨大学学报(自然科学版),2016,37(2):179.[doi:10.11830/ISSN.1000-5013.2016.02.0179]
 LIU Yujia,TAN Gewei.Improved Adaptive Optimal Low-Rank Channel Estimation Algorithm[J].Journal of Huaqiao University(Natural Science),2016,37(5):179.[doi:10.11830/ISSN.1000-5013.2016.02.0179]

备注/Memo

备注/Memo:
收稿日期: 2016-12-21
通信作者: 郭东生(1987-),男,副教授,博士,主要从事神经网络、数值算法和机器人方面的研究.E-mail:gdongsh@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(61603143); 福建省自然科学基金资助项目(2016J01307); 华侨大学中青年教师科技创新计划资助项目(ZQN-YX402); 华侨大学高层次人才科研启动项目(15BS410)
更新日期/Last Update: 2017-09-20