参考文献/References:
[1] GOTTLIEB D,ORSZAG S A.Numerical analysis of spectral methods: Theory and applications[M].Philadelphia:SIAM,1977:1-179.
[2] BERNARDI C,MADAY Y.Approximations spectrales de probl`emes aux limites elliptiques[M].Berlin:Springer-Verlag,1992:1-248.
[3] GUO Benyu.Spectral methods and their applications[M].Singapore:World Scientific,1998:100-358.
[4] KARNIADAKIS G,SHERWIN S J.Spectral/hp element methods for computational fluid dynamics[M].London:Oxford University Press,2005:187-348.
[5] SHEN Jie,TANG Tao.Spectral and high-order methods with applications[M].Beijing:Science Press of China,2006:183-298.
[6] CANUTO C,HUSSAINI M Y,QUARTERONI A,et al.Spectral methods: Fundamentals in single domains[M].Berlin:Springer-Verlag,2006:401-470.
[7] CANUTO C,HUSSAINI M Y,QUARTERONI A,et al.Spectral methods: Evolution to complex geometries and applications to fluid dynamics[M].Berlin:Springer Verlag,2007:237-357.
[8] MA Heping,SUN Weiwei.A Legendre-Petrov-Galerkin and chebyshev collocation method for third-order differential equations[J].SIAM J NUMER ANAL,2000,38(5):1425-1438.
[9] MA Heping,SUN Weiwei.Optimal error estiamtes of the Legendre-Petrov-Galerkin method for the Korteweg-De Vries equation[J].SIAM J NUMER ANAL,2001,39(4):1380-1394.
[10] SHEN Jie.A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: Application to the KDV equation[J].SIAM J NUMER ANAL,2003,41(5):1595-1619.
[11] SHEN Jie,WANG Lilian.Laguerre and composite Legendre-Laguerre dual-Petrov-Galerkin methods for third-order equations[J].Discrete and Continuous Dynamical Systems Series B,2006,6(6):1381-1402.
[12] ZHENG Chunxiong,WEN Xin,HAN Houde.Numerical solution to a linearized KDV equation on unbounded domain[J].Numerical Methods for Partial Differential Equations,2008,24(2):383-399.
[13] 吴胜,庄清渠.三阶微分方程的Legendre-Petrov-Galerkin谱元方法[J].华侨大学学报(自然科学版),2013,34(3):344-348.