参考文献/References:
[1] LAMPART M,ZAPOMEL J.Dynamics of the electromechanical system with impact element[J].Journal of Sound and Vibration,2013,332(4):701-713.
[2] YAMAPI R,FILATRELLA G,AZIZ-ALAOUI M A.Global stability analysis of birhythmicity in a self-sustained oscillator[J].Chaos,2010,20(1):013114.
[3] 韩清凯,秦朝烨,闻邦椿.自同步振动系统的稳定性与分岔[J].振动与冲击,2007,26(1):31-34.
[4] 张琪昌,田瑞兰.一类机电耦合非线性动力系统的余维2动态分岔[J].工程力学,2009,26(1):216-220.
[5] 张永祥,孔贵芹,俞建宁.振动筛系统的两类余维3分岔与非常规混沌演化[J].物理学报,2008,57(10):6182-6187.
[6] 王从庆,吴鹏飞,周鑫.基于最小关节力矩优化的自由浮动空间刚柔耦合机械臂混沌动力学建模与控制[J].物理学报,2012,61(23):230503.
[7] WANG Zhen,WU Yuntian,LI Yongxin,et al.Adaptive backstepping control of a nonlinear electromechanical system with unknown parameters[C]//Proceedings of the 4th International Conference on Computer Science and Education.Nanning:IEEE Press,2009:441-444.
[8] 王震.非线性机电换能器混沌系统的无源化控制[J].控制理论与应用,2011,28(7):1036-1040.
[9] KADJIA H G E,YAMAPI R.General synchronization dynamics of coupled Van der Pol-Duffing oscillators[J].Physica A,2006,370(2):316-328.
[10] LI Xinye,CHEN Yushu,WU Zhiqiang,et al.Response of parametrically excited Duffing-van der Pol oscillator with delayed feedback[J].Applied Mathematics and Mechanics,2006,27(12):1585-1595.
[11] MA Suqi,LU Qishao,FENG Zhaosheng.Double Hopf bifurcation for Vanderpol-Duffing oscillator with parametric delay feedback control[J].J Math Anal Appl,2008,338(2):993-1007.
[12] ARENA P,CAPONETTO R,FORTUNA L,et al.Chaos in a fractional order duffing system[C]//Proceedings of the European Conference on Circuit Theory and Design.Budapest:Technical University of Budapest,1997:1259-1262.
[13] LI Chunguang,LIAO Xiaofeng,YU Juebang.Synchronization of fractional order chaotic systems[J].Physical Review E,2003,68(6):067203.
[14] 王震,孙卫,惠小健,等.非线性机电换能器混沌系统的动力学分析与控制[J].制造业自动化,2014,36(10):25-30.
[15] 张江源,林福泳.基于离散元的多分辨率信号去躁新方法[J].华侨大学学报(自然科学版),2013,34(3):130-133.
[16] GERSCHGORIN S.über die abgrenzung der eigenwerte einer matrix[J].Izv Akad Nauk USSR Otd Fiz: Mat Nauk,1931(6):749-754.