[1]张军.网络入侵环境下健康节点选择方法设计与仿真[J].华侨大学学报(自然科学版),2016,37(6):754-757.[doi:10.11830/ISSN.1000-5013.201606018]
 ZHANG Jun.Health Design and Simulation of the Node Selection Method in Environment of Network Intrusion[J].Journal of Huaqiao University(Natural Science),2016,37(6):754-757.[doi:10.11830/ISSN.1000-5013.201606018]
点击复制

网络入侵环境下健康节点选择方法设计与仿真()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第6期
页码:
754-757
栏目:
出版日期:
2016-11-20

文章信息/Info

Title:
Health Design and Simulation of the Node Selection Method in Environment of Network Intrusion
文章编号:
1000-5013(2016)06-0754-04
作者:
张军
江苏海事职业技术学院 信息工程系, 江苏 南京 211170
Author(s):
ZHANG Jun
Department of Information and Engineering, Jiangsu Maritime Institute, Nanjing 211170, China
关键词:
网络入侵 健康节点 模糊约束 BP神经网络 粒子群算法
Keywords:
network invasion health node fuzzy constraints BP neural networks particle swarm algorithm
分类号:
TP127
DOI:
10.11830/ISSN.1000-5013.201606018
文献标志码:
A
摘要:
提出一种网络入侵环境下健康节点通信选择算法.针对节点特征建立模糊数学模型,对健康节点选择的成本进行约束,引入粒子群优化算法,结合不确定因素,对参数进行优化,实现健康节点的选择.实验结果表明:与传统的BP神经网络方法相比,改进的网络入侵环境下健康节点通信选择算法提高了健康节点选择的精度,缩短了运行时间,能将入侵后的误差控制在合理的范围内.
Abstract:
Accurately selectting health node in network intrusion environment can guarantee the normal operation of the network. Fuzzy mathematics model is established based on the node characteristics to constraint the cost of the health node selection. Introducing the particle swarm optimization algorithm combining with the uncertainties to optimize the parameters, and to achieve healthy node selection. The experimental results show that compared with the traditional BP neural network method, the improved network intrusion environment health communication node selection algorithm improved the precision of node selection of health, shorten the operation time. After the invasion, the error can be controlled in a reasonable range.

参考文献/References:

[1] 戴天虹,李昊.基于改进APIT算法的无线传感器网络节点定位[J].传感器与微系统,2016,35(1):135-138.
[2] XU Kun,LIU Hongli,LIU Dawei,et al.Linear programming algorithms for sensor networks node localization[C]//IEEE International Conference on Consumer Electronics.Hangzhou:IEEE Press,2016:115-123.
[3] SONG Yang,DONG Enqing,LIU Wei,et al.An iterative method of processing node flip ambiguity in wireless sensor networks node localization[C]//International Conference on Information Networking.Chengdu:IEEE Computer Society,2016:92-97.
[4] 王景珲.一种基于DV-Hop的无线传感器网络节点定位算法[J].计算机工程,2015,41(1):82-86.
[5] CHO S Y.Measurement error observer-based IMM filtering for mobile node localization using WLAN RSSI measurement[J].IEEE Sensors Journal,2016,16(8):2489-2499.
[6] 郑学伟.基于多维定标算法的WSN安全节点定位研究[J].电子设计工程,2015(15):72-74.
[7] 鲁银芝,仲元昌,杨柳,等.大规模带状无线传感器网络节点定位算法[J].传感器与微系统,2015,34(1):138-141.
[8] 严丽,王启志.GA-Elman网络的网络控制系统预测[J].华侨大学学报(自然科学版),2014,35(6):620-624.
[9] 胡明霞.基于BP神经网络的入侵检测算法[J].计算机工程,2012,38(6):148-150.
[10] 张敏.一种基于灰度区间的BP神经网络算法研究[J].科技信息,2012(35):97-99.

备注/Memo

备注/Memo:
收稿日期: 2016-10-13
通信作者: 张军(1973-),男,副教授,主要从事网络安全技术、量子通信理论的研究.E-mail:njhxzhr@163.com.
基金项目: 江苏省现代教育技术重点研究课题(2015-R-42639)
更新日期/Last Update: 2016-11-20