[1]余路.电信客户流失的组合预测模型[J].华侨大学学报(自然科学版),2016,37(5):637-640.[doi:10.11830/ISSN.1000-5013.201605022]
 YU Lu.Combination Forecasting Model of Customer Churns in Telecom Industry[J].Journal of Huaqiao University(Natural Science),2016,37(5):637-640.[doi:10.11830/ISSN.1000-5013.201605022]
点击复制

电信客户流失的组合预测模型()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第5期
页码:
637-640
栏目:
出版日期:
2016-09-20

文章信息/Info

Title:
Combination Forecasting Model of Customer Churns in Telecom Industry
文章编号:
1000-5013(2016)05-0637-04
作者:
余路12
1. 西南大学 计算机与信息科技学院, 重庆 北碚 400715; 2. 重庆涪陵广播电视大学 教务处, 重庆 涪陵 408000
Author(s):
YU Lu12
1. School of Computer and Information Science, Southwestern University, Chongqing 400715, China; 2. Teaching Affair Office, Chongqing Fuling Radio and television University, Chongqing 408000, China
关键词:
客户流失 预测模型 电信企业 决策树C5.0 BP神经网络 Logistic回归算法
Keywords:
customer churn forecasting model telecom industry decision tree C5.0 back-propagation neural network logistic regression algorithm
分类号:
TP311.5
DOI:
10.11830/ISSN.1000-5013.201605022
文献标志码:
A
摘要:
针对电信行业客户流失的问题,设计基于决策树C5.0、BP神经网络及 Logistic 回归算法的组合预测模型,并对某电信企业进行客户流失预测.预测结果表明:与单一客户流失预测模型相比,组合预测模型命中准确率高,预测效果好,更能直观地显示出流失客户的基本特征.
Abstract:
According to telecommunication customer churn problem, the forecasting model based on decision tree C5.0, BP(back-propagation)neural network and logistic regression algorithm combination is designed, and according to orecasting of the customer churns in some telecom companies, the accuracy is higher and prediction effect is good in combination forecasting model compared to a single customer churn prediction model. It shows the basic features of the customer churn more directly.

参考文献/References:

[1] 夏国恩.客户流失预测的现状与发展研究[J].计算机应用研究,2010,27(2):151-153.
[2] 张线媚.数据挖掘在电信行业客户流失预测中的应用[J].微型机与应用,2015,34(15):99-102.
[3] 刘光远,苑森淼,董立岩.数据挖掘方法在用户流失预测分析中的应用[J].计算机工程与应用,2007,43(9):154-156.
[4] 郭俊芳,周生宝.基于联合决策树的客户流失预测模型设计[J].计算机与现代化,2010(5):5-7.
[5] 尹婷,覃锡忠,贾振红,等.基于WEKA 的客户流失预测研究[J].激光杂志,2013,34(5):44-46.
[6] 仲继.电信企业客户流失预测模型研究[D].西安:西安科技大学,2011:21-22.
[7] 张晓滨,高峰,黄慧.基于客户细分的客户流失预测研究[J].计算机工程与设计,2009,30(24):5755-5758.
[8] 王晓华.电信数据挖掘的数据质量评估技术研究[D].杭州:浙江大学,2010:7-10.
[9] 潘大胜,屈迟文.一种改进ID3型决策树挖掘算法[J].华侨大学学报(自然科学版),2016,37(1):71-73.
[10] CONG H E, REN Lihong, DING Yongsheng. Performance prediction of carbon fiber protofilament based on SAGA-SVR [J].Journal of Donghua University,2014,31(2):92-97.
[11] 李爱群,乔晗,王汝传,等.基于分布式混合数据挖掘的电信客户流失分析[J].计算机技术与发展,2010,20(10):43-46.
[12] 朱龙.利润约束的关联规则挖掘算法[J].华侨大学学报(自然科学版),2015,36(9):522-526.
[13] THANGAPARVATHI B,ANANDHAVALLI D,SHALINIE S M.A high speed decision tree classifier algorithm for huge dataste[C]//IEEE-International Conference on Recent Trends in Information Technology.[S.l.]:IEEE Press,2011,10(6):695-700.
[14] 迟准.电信运营企业客户流失预测与评价研究[D].哈尔滨:哈尔滨工程大学,2013:73-74.

相似文献/References:

[1]汪帆.自然通风建筑室内热状况预测模型[J].华侨大学学报(自然科学版),1991,12(2):182.[doi:10.11830/ISSN.1000-5013.1991.02.0182]
 Wang Fan.An Indoor Thermal Characteristics Prediction Model for the Use of Naturally Ventilated Building[J].Journal of Huaqiao University(Natural Science),1991,12(5):182.[doi:10.11830/ISSN.1000-5013.1991.02.0182]
[2]卫海燕.深圳市境外游客市场的动态预测模型分析[J].华侨大学学报(自然科学版),1999,20(3):326.[doi:10.11830/ISSN.1000-5013.1999.03.0326]
 Wei Haiyan.A Dynamic Prediction Model for Analysing the Market of Overseas Tourists in Shenzhen City[J].Journal of Huaqiao University(Natural Science),1999,20(5):326.[doi:10.11830/ISSN.1000-5013.1999.03.0326]
[3]李浩,施养杭.混凝土碳化深度预测模型的比对与分析[J].华侨大学学报(自然科学版),2007,28(2):192.[doi:10.3969/j.issn.1000-5013.2007.02.021]
 LI Hao,SHI Yang-hang.Discussion of Concrete Carbonation Depth Predictive Models[J].Journal of Huaqiao University(Natural Science),2007,28(5):192.[doi:10.3969/j.issn.1000-5013.2007.02.021]
[4]施养杭,李浩.混凝土结构碳化寿命可靠度分析[J].华侨大学学报(自然科学版),2008,29(4):600.[doi:10.11830/ISSN.1000-5013.2008.04.0600]
 SHI Yang-hang,LI Hao.Reliability Analysis on Life of Carbonized Concrete Structure[J].Journal of Huaqiao University(Natural Science),2008,29(5):600.[doi:10.11830/ISSN.1000-5013.2008.04.0600]
[5]叶青.厦门市工程估价的RBF神经网络预测模型[J].华侨大学学报(自然科学版),2012,33(4):446.[doi:10.11830/ISSN.1000-5013.2012.04.0446]
 YE Qing.Prediction Model of the Project Cost Estimation Based on RBF Neural Network[J].Journal of Huaqiao University(Natural Science),2012,33(5):446.[doi:10.11830/ISSN.1000-5013.2012.04.0446]
[6]刘婧,叶青.采用BP和RBF神经网络的厦门市工程造价预测模型[J].华侨大学学报(自然科学版),2013,34(5):576.[doi:10.11830/ISSN.1000-5013.2013.05.0576]
 LIU Jing,YE Qing.Project Cost Prediction Model Based on BP and RBP Neural Networks in Xiamen City[J].Journal of Huaqiao University(Natural Science),2013,34(5):576.[doi:10.11830/ISSN.1000-5013.2013.05.0576]
[7]莫小琴,李钟慎.混沌时间序列的LSSVM预测方法[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 MO Xiao-qin,LI Zhong-shen.Prediction Method of the Chaotic Time Series Using Least Squares Support Vector Machine[J].Journal of Huaqiao University(Natural Science),2015,36(5):0.
[8]莫小琴,李钟慎.混沌时间序列的LSSVM预测方法[J].华侨大学学报(自然科学版),2014,35(4):373.[doi:10.11830/ISSN.1000-5013.2014.04.0373]
 MO Xiao-qin,LI Zhong-shen.Prediction Method of the Chaotic Time Series Using Least Squares Support Vector Machine[J].Journal of Huaqiao University(Natural Science),2014,35(5):373.[doi:10.11830/ISSN.1000-5013.2014.04.0373]
[9]冉茂宇.非出水时段电热水器加热时间与能耗的预测模型[J].华侨大学学报(自然科学版),2016,37(2):247.[doi:10.11830/ISSN.1000-5013.2016.02.0247]
 RAN Maoyu.Prediction Model of the Heating Time and Energy Consumption of Electric Water Heater During the Un-Draining Period[J].Journal of Huaqiao University(Natural Science),2016,37(5):247.[doi:10.11830/ISSN.1000-5013.2016.02.0247]
[10]冉茂宇.不同出水方式下电热水器出水时间与出水量的预测模型[J].华侨大学学报(自然科学版),2016,37(4):451.[doi:10.11830/ISSN.1000-5013.201604012]
 RAN Maoyu.Prediction Model of Water Draining Time and Volume for Electric Water Heater in Different Water Draining Modes[J].Journal of Huaqiao University(Natural Science),2016,37(5):451.[doi:10.11830/ISSN.1000-5013.201604012]

备注/Memo

备注/Memo:
收稿日期: 2016-06-20
通信作者: 余路(1972-),男,讲师,博士,主要从事计算机数据库技术的研究.E-mail:flddyl@126.com.
基金项目: 重庆市自然科学技术研究项目(KJ131302)
更新日期/Last Update: 2016-09-20