参考文献/References:
[1] 夏国恩.客户流失预测的现状与发展研究[J].计算机应用研究,2010,27(2):151-153.
[2] 张线媚.数据挖掘在电信行业客户流失预测中的应用[J].微型机与应用,2015,34(15):99-102.
[3] 刘光远,苑森淼,董立岩.数据挖掘方法在用户流失预测分析中的应用[J].计算机工程与应用,2007,43(9):154-156.
[4] 郭俊芳,周生宝.基于联合决策树的客户流失预测模型设计[J].计算机与现代化,2010(5):5-7.
[5] 尹婷,覃锡忠,贾振红,等.基于WEKA 的客户流失预测研究[J].激光杂志,2013,34(5):44-46.
[6] 仲继.电信企业客户流失预测模型研究[D].西安:西安科技大学,2011:21-22.
[7] 张晓滨,高峰,黄慧.基于客户细分的客户流失预测研究[J].计算机工程与设计,2009,30(24):5755-5758.
[8] 王晓华.电信数据挖掘的数据质量评估技术研究[D].杭州:浙江大学,2010:7-10.
[9] 潘大胜,屈迟文.一种改进ID3型决策树挖掘算法[J].华侨大学学报(自然科学版),2016,37(1):71-73.
[10] CONG H E, REN Lihong, DING Yongsheng. Performance prediction of carbon fiber protofilament based on SAGA-SVR [J].Journal of Donghua University,2014,31(2):92-97.
[11] 李爱群,乔晗,王汝传,等.基于分布式混合数据挖掘的电信客户流失分析[J].计算机技术与发展,2010,20(10):43-46.
[12] 朱龙.利润约束的关联规则挖掘算法[J].华侨大学学报(自然科学版),2015,36(9):522-526.
[13] THANGAPARVATHI B,ANANDHAVALLI D,SHALINIE S M.A high speed decision tree classifier algorithm for huge dataste[C]//IEEE-International Conference on Recent Trends in Information Technology.[S.l.]:IEEE Press,2011,10(6):695-700.
[14] 迟准.电信运营企业客户流失预测与评价研究[D].哈尔滨:哈尔滨工程大学,2013:73-74.
相似文献/References:
[1]汪帆.自然通风建筑室内热状况预测模型[J].华侨大学学报(自然科学版),1991,12(2):182.[doi:10.11830/ISSN.1000-5013.1991.02.0182]
Wang Fan.An Indoor Thermal Characteristics Prediction Model for the Use of Naturally Ventilated Building[J].Journal of Huaqiao University(Natural Science),1991,12(5):182.[doi:10.11830/ISSN.1000-5013.1991.02.0182]
[2]卫海燕.深圳市境外游客市场的动态预测模型分析[J].华侨大学学报(自然科学版),1999,20(3):326.[doi:10.11830/ISSN.1000-5013.1999.03.0326]
Wei Haiyan.A Dynamic Prediction Model for Analysing the Market of Overseas Tourists in Shenzhen City[J].Journal of Huaqiao University(Natural Science),1999,20(5):326.[doi:10.11830/ISSN.1000-5013.1999.03.0326]
[3]李浩,施养杭.混凝土碳化深度预测模型的比对与分析[J].华侨大学学报(自然科学版),2007,28(2):192.[doi:10.3969/j.issn.1000-5013.2007.02.021]
LI Hao,SHI Yang-hang.Discussion of Concrete Carbonation Depth Predictive Models[J].Journal of Huaqiao University(Natural Science),2007,28(5):192.[doi:10.3969/j.issn.1000-5013.2007.02.021]
[4]施养杭,李浩.混凝土结构碳化寿命可靠度分析[J].华侨大学学报(自然科学版),2008,29(4):600.[doi:10.11830/ISSN.1000-5013.2008.04.0600]
SHI Yang-hang,LI Hao.Reliability Analysis on Life of Carbonized Concrete Structure[J].Journal of Huaqiao University(Natural Science),2008,29(5):600.[doi:10.11830/ISSN.1000-5013.2008.04.0600]
[5]叶青.厦门市工程估价的RBF神经网络预测模型[J].华侨大学学报(自然科学版),2012,33(4):446.[doi:10.11830/ISSN.1000-5013.2012.04.0446]
YE Qing.Prediction Model of the Project Cost Estimation Based on RBF Neural Network[J].Journal of Huaqiao University(Natural Science),2012,33(5):446.[doi:10.11830/ISSN.1000-5013.2012.04.0446]
[6]刘婧,叶青.采用BP和RBF神经网络的厦门市工程造价预测模型[J].华侨大学学报(自然科学版),2013,34(5):576.[doi:10.11830/ISSN.1000-5013.2013.05.0576]
LIU Jing,YE Qing.Project Cost Prediction Model Based on BP and RBP Neural Networks in Xiamen City[J].Journal of Huaqiao University(Natural Science),2013,34(5):576.[doi:10.11830/ISSN.1000-5013.2013.05.0576]
[7]莫小琴,李钟慎.混沌时间序列的LSSVM预测方法[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
MO Xiao-qin,LI Zhong-shen.Prediction Method of the Chaotic Time Series Using Least Squares Support Vector Machine[J].Journal of Huaqiao University(Natural Science),2015,36(5):0.
[8]莫小琴,李钟慎.混沌时间序列的LSSVM预测方法[J].华侨大学学报(自然科学版),2014,35(4):373.[doi:10.11830/ISSN.1000-5013.2014.04.0373]
MO Xiao-qin,LI Zhong-shen.Prediction Method of the Chaotic Time Series Using Least Squares Support Vector Machine[J].Journal of Huaqiao University(Natural Science),2014,35(5):373.[doi:10.11830/ISSN.1000-5013.2014.04.0373]
[9]冉茂宇.非出水时段电热水器加热时间与能耗的预测模型[J].华侨大学学报(自然科学版),2016,37(2):247.[doi:10.11830/ISSN.1000-5013.2016.02.0247]
RAN Maoyu.Prediction Model of the Heating Time and Energy Consumption of Electric Water Heater During the Un-Draining Period[J].Journal of Huaqiao University(Natural Science),2016,37(5):247.[doi:10.11830/ISSN.1000-5013.2016.02.0247]
[10]冉茂宇.不同出水方式下电热水器出水时间与出水量的预测模型[J].华侨大学学报(自然科学版),2016,37(4):451.[doi:10.11830/ISSN.1000-5013.201604012]
RAN Maoyu.Prediction Model of Water Draining Time and Volume for Electric Water Heater in Different Water Draining Modes[J].Journal of Huaqiao University(Natural Science),2016,37(5):451.[doi:10.11830/ISSN.1000-5013.201604012]