[1]温振庶.经典的Drinfel’d-Sokolov-Wilson方程的非线性波解[J].华侨大学学报(自然科学版),2016,37(4):519-522.[doi:10.11830/ISSN.1000-5013.201604026]
 WEN Zhenshu.Nonlinear Wave Solutions for the Classical Drinfel’d-Sokolov-Wilson Equation[J].Journal of Huaqiao University(Natural Science),2016,37(4):519-522.[doi:10.11830/ISSN.1000-5013.201604026]
点击复制

经典的Drinfel’d-Sokolov-Wilson方程的非线性波解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第4期
页码:
519-522
栏目:
出版日期:
2016-07-04

文章信息/Info

Title:
Nonlinear Wave Solutions for the Classical Drinfel’d-Sokolov-Wilson Equation
文章编号:
1000-5013(2016)04-0519-04
作者:
温振庶
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
WEN Zhenshu
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Drinfel’d-Sokolov-Wilson方程 (G’/G)-展开法 非线性波解 显式表达式
Keywords:
Drinfel’d-Sokolov-Wilson equation (G’/G)-expansion method nonlinear wave solutions explicit expressions
分类号:
O175.29
DOI:
10.11830/ISSN.1000-5013.201604026
文献标志码:
A
摘要:
利用(G’/G)-展开法,构造经典的Drinfel’d-Sokolov-Wilson方程的新的非线性波解.这些非线性波解分别以双曲函数、三角函数和分式函数的形式表达.结果表明:(G’/G)-展开法是研究数学物理方程的非线性波解的一种有效工具.
Abstract:
We constructed new nonlinear wave solutions for the classical Drinfel’d-Sokolov-Wilson Equation by exploiting(G’/G)-expansion method. These nonlinear wave solutions are expressed in the forms of the hyperbolic functions, the trigonometric functions and the rational functions. The results show that(G’/G)-expansion method is an efficient tool for studying nonlinear wave solutions of mathematical physics equations.

参考文献/References:

[1] HIROTA R,GRAMMATICOS B,RAMANI A.Soliton structure of the Drinfel’d-Sokolov-Wilson equation[J].Journal of Mathematical Physics,1986,27(6):1499-1505.
[2] YAO Ruoxia,LI Zhibin.New exact solutions for three nonlinear evolution equations[J].Physics Letters A,2002,297(3):196-204.
[3] LIU Chunping,LIU Xiaoping.Exact solutions of the classical Drinfel’d-Sokolov-Wilson equations and the relations among the solutions[J].Physics Letters A,2002,303(2):197-203.
[4] FAN Engui.An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinear evolution equations[J].Journal of Physics A:Mathematical and General,2003,36(25):7009-7026.
[5] YAO Yuqin.Abundant families of new traveling wave solutions for the coupled Drinfel’d-Sokolov-Wilson equation[J].Chaos, Solitons & Fractals,2005,24(1):301-307.
[6] ZHAO Xueqin,ZHI Hongyan.An improved F-expansion method and its application to coupled Drinfel’d-Sokolov-Wilson equation[J].Communications in Theoretical Physics,2008,50(2):309-314.
[7] WEN Zhenshu,LIU Zhengrong,SONG Ming.New exact solutions for the classical Drinfel’d-Sokolov-Wilson equation[J].Applied Mathematics and Computation,2009,215(6):2349-2358.
[8] 刘正荣,唐昊.KdV方程和mKdV方程的新奇异解[J].华南理工大学学报(自然科学版),2012,40(10):96-101.
[9] WEN Zhenshu.Extension on peakons and periodic cusp waves for the generalization of the Camassa-Holm equation[J].Mathematical Methods in the Applied Sciences,2015,38(11):2363-2375.
[10] 温振庶.耦合的修正变系数KdV方程的非线性波解[J].华侨大学学报(自然科学版),2014,35(5):597-600.
[11] WEN Zhenshu,LIU Zhengrong.Bifurcation of peakons and periodic cusp waves for the generalization of the camassa-holm equation[J].Nonlinear Analysis:Real World Applications,2011,12(3):1698-1707.
[12] WEN Zhenshu.Bifurcations and nonlinear wave solutions for the generalized two-component integrable Dullin-Gottwald-Holm system[J].Nonlinear Dynamics,2015,82(1/2):767-781.
[13] WEN Zhenshu.Bifurcation of traveling wave solutions for a two-component generalized θ-equation[J].Mathematical Problems in Engineering,2012,2012(2):1-17.
[14] WEN Zhenshu.Extension on bifurcations of traveling wave solutions for a two-component fornberg-whitham equation[J].Abstract and Applied Analysis,2012,2012:1-15.
[15] WEN Zhenshu.New exact explicit nonlinear wave solutions for the Broer-Kaup equation[J].Journal of Applied Mathematics,2014,2014(5):1-7.
[16] WEN Zhenshu.Bifurcation of solitons, peakons, and periodic cusp waves for θ-equation[J].Nonlinear Dynamics,2014,77(1/2):247-253.
[17] WEN Zhenshu.Several new types of bounded wave solutions for the generalized two-component Camassa-Holm equation[J].Nonlinear Dynamics,2014,77(3):849-857.
[18] WANG Mingliang,LI Xiangzheng,ZHANG Jinliang.The(G’/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J].Physics Letters A,2008,372(4):417-423.
[19] WANG Mingliang,ZHANG Jinliang,LI Xiangzheng.Application of the(G’/G)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations[J].Applied Mathematics and Computation,2008,206(1):321-326.

备注/Memo

备注/Memo:
收稿日期: 2016-03-16
通信作者: 温振庶(1984-),男,副教授,博士,主要从事微分方程与动力系统的研究.E-mail:wenzhenshu@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(61573004, 11401230); 福建省自然科学基金资助项目(2015J05008); 福建省教育厅科技项目(JA14023)
更新日期/Last Update: 2016-07-20