[1]李海英,赵建英.相干态在量子相空间中二维正态分布[J].华侨大学学报(自然科学版),2016,37(3):391-394.[doi:10.11830/ISSN.1000-5013.2016.03.0391]
 LI Haiying.,ZHAO Jianying.Two Variable Normal Distribution of Coherent States in Quantum Space[J].Journal of Huaqiao University(Natural Science),2016,37(3):391-394.[doi:10.11830/ISSN.1000-5013.2016.03.0391]
点击复制

相干态在量子相空间中二维正态分布()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第3期
页码:
391-394
栏目:
出版日期:
2016-05-09

文章信息/Info

Title:
Two Variable Normal Distribution of Coherent States in Quantum Space
文章编号:
1000-5013(2016)03-0391-04
作者:
李海英12 赵建英2
1. 内蒙古师范大学 数学系, 内蒙古 呼和浩特 010022; 2. 内蒙古商贸职业学院 社科与基础教学部, 内蒙古 呼和浩特 010070
Author(s):
LI Haiying1.2 ZHAO Jianying2
1. Mathematical School, Inner Mongolia Normal University, Hohhot 010022, China; 2. Department of Social Sinence and Basic teaching, Inner Mongolia Business and Trade College, Hohhot 010070, China
关键词:
正态分布 量子空间 相干态 分布密度 正规乘积
Keywords:
normal distribution puantum space coherent state density function normal product
分类号:
O211.3;O413.1
DOI:
10.11830/ISSN.1000-5013.2016.03.0391
文献标志码:
A
摘要:
将数理统计中的正态分布与物理学中的量子力学不确定性有效结合,通过二维正态分布密度函数和有序算符内的积分技术,简单有效地求得量子空间中粒子坐标|x〉,动量本征态|p〉及相干态|z〉在 Fock 表象中的表达式,并证明其完备性.结果表明:通过采用数理统计及正规乘积方法,求证结果准确,且大大简化了求证过程.
Abstract:
Normal distribution in mathematical statistics and the uncertainty of quantum mechanics in physics are effectively combined, by two dimensional normal distribution density function and orderly operator of integral technology, simple quantum particle in the space coordinate |x〉, momentum intrinsic state |p〉 and coherent state |z〉expression in Fock representation are obtained effectively, and its completeness is also proved. By using mathematical statistics and normal product method, we show that the obtained result is not only accurate but also greatly simplifies the process of verification.

参考文献/References:

[1] 杨金勇.一类非线性比式和问题的分支定界算法[J].华侨大学学报(自然科学版),2015,35(3):14-16.
[2] WICK G.Quantum phase space theory based on intermediate coordinate-momentum representation[J].Phys Rev,1950,80:131-138.
[3] DIRAC P A M.The principles of quantum mechanics[J].Phys Lett B,1930,72:38-41.
[4] DIRAC P A M.量子力学原理[M].4 版.陈咸享,译.北京:科学出版社,2010:61-89.
[5] 范洪义.量子力学表象与变换论[M].上海:上海科学技术出版社,1997:97-181.
[6] 曾谨言.量子力学(卷Ⅰ)[M].4 版.北京:科学出版社,2000:91-148.
[7] KLAUDER J R,SKARGERSTAM B S.Coherent states world scientific[J].J Sediment Res,1985,23(7):67-69.
[8] 范洪义.相干态在参数量子相空间的两维正态分布[J].物理学报,2014,63(2):15-20.doi:10.7498/aps.63.020302.
[9] GLAUBER R J.The philosophy of quantum mechanics[J].Phys Rev,1963,131(29):2766-2769.
[10] DIRAC P A M.Recollections of an exciting area, history of 20th century physics[M].New York:Academic Press,1977:59-102.
[11] CHEN Lin.Sources of quantum mechanics[J].Math J Phys,1966,23(7):781-785.

备注/Memo

备注/Memo:
收稿日期: 2016-03-03
通信作者: 李海英(1968-),女,副教授,主要从事高等数学的研究.E-mail:sunjinpo838@163.com.
基金项目: 内蒙古自治区高等学校科学研究基金资助项目(NJZY16399); 中国教育学会“十一五”科研规划重点基金资助项目(ZY0084)
更新日期/Last Update: 2016-05-20