[1]温振庶.(N+1)维广义的Boussinesq方程的精确显式非线性波解[J].华侨大学学报(自然科学版),2016,37(3):380-385.[doi:10.11830/ISSN.1000-5013.2016.03.0380]
 WEN Zhenshu.Exact Explicit Nonlinear Wave Solutions for the(N+1)-Dimensional Generalized Boussinesq Equation[J].Journal of Huaqiao University(Natural Science),2016,37(3):380-385.[doi:10.11830/ISSN.1000-5013.2016.03.0380]
点击复制

(N+1)维广义的Boussinesq方程的精确显式非线性波解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第3期
页码:
380-385
栏目:
出版日期:
2016-05-09

文章信息/Info

Title:
Exact Explicit Nonlinear Wave Solutions for the(N+1)-Dimensional Generalized Boussinesq Equation
文章编号:
1000-5013(2016)03-0380-06
作者:
温振庶
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
WEN Zhenshu
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
(N+1)维广义的Boussinesq方程 孤立波解 爆破解 周期爆破解 扭波型解
Keywords:
(N+1)-dimensional generalized boussinesq equation solitary wave solutions blow-up solutions periodic blow-up solutions kink-shaped solutions
分类号:
O175.29
DOI:
10.11830/ISSN.1000-5013.2016.03.0380
文献标志码:
A
摘要:
研究(N+1)维广义的Boussinesq方程的非线性波解.利用动力系统定性理论和分支方法,获得它的多种非线性波解的精确显式表达式,这些解包括孤立波解,爆破解,周期爆破解和扭波型解.
Abstract:
In this paper, we study the nonlinear wave solutions for the(N+1)-dimensional generalized Boussinesq equation. Using the bifurcation method and qualitative theory of dynamical systems, we obtain many exact explicit expressions of the nonlinear wave solutions for the equation. These solutions contain solitary wave solutions, blow-up solutions, periodic blow-up solutions, and kink-shaped solutions.

参考文献/References:

[1] YAN Zhenya.Similarity transformations and exact solutions for a family of higher-dimensional generalized Boussinesq equations[J].Physics Letters A,2007,361(3):223-230.
[2] GUO Yunxi,LAI Shaoyong.New exact solutions for an(n+1)-dimensional generalized Boussinesq equation[J].Nonlinear Analysis: Theory, Methods and Applications,2010,72(6):2863-2873.
[3] LIU Changfu,DAI Zhengde.Exact periodic solitary wave solutions for the(2+1)-dimensional Boussinesq equation[J].Journal of Mathematical Analysis and Applications,2010,367(2):444-450.
[4] ABDELRADY A,OSMAN E,KHALFALLAH M.On soliton solutions of the(2+1)-dimensional Boussinesq equation[J].Applied Mathematics and Computation,2012,219(8):3414-3419.
[5] SONG Ming,SHAO Shuguang.Exact solitary wave solutions of the generalized(2+1)-dimensional Boussinesq equation[J].Applied Mathematics and Computation,2010,217(7):3557-3563.
[6] 刘正荣,唐昊.KdV方程和mKdV方程的新奇异解[J].华南理工大学学报(自然科学版),2012,40(10):96-101.
[7] WEN Zhenshu.Bifurcation of solitons, peakons, and periodic cusp waves for θ-equation[J].Nonlinear Dynamics,2014,77(1/2):247-253.
[8] WEN Zhenshu.Several new types of bounded wave solutions for the generalized two-component Camassa-Holm equation[J].Nonlinear Dynamics,2014,77(3):849-857.
[9] WEN Zhenshu.Bifurcations and nonlinear wave solutions for the generalized two-component integrable Dullin-Gottwald-Holm system[J].Nonlinear Dynamics,2015,82(1/2):767-781.
[10] WEN Zhenshu.Extension on peakons and periodic cusp waves for the generalization of the Camassa-Holm equation[J].Mathematical Methods in the Applied Sciences,2015,38(11):2363-2375.
[11] WEN Zhenshu,LIU Zhengrong.Bifurcation of peakons and periodic cusp waves for the generalization of the camassa-holm equation[J].Nonlinear Analysis: Real World Applications,2011,12(3):1698-1707.
[12] WEN Zhenshu,LIU Zhengrong,SONG Ming.New exact solutions for the classical drinfel’d-sokolov-wilson equation[J].Applied Mathematics and Computation,2009,215(6):2349-2358.
[13] WEN Zhenshu.Bifurcation of traveling wave solutions for a two-component generalized θ-equation[J].Mathematical Problems in Engineering,2012,2012:1-17.
[14] WEN Zhenshu.Extension on bifurcations of traveling wave solutions for a two-component fornberg-whitham equation[J].Abstract and Applied Analysis,2012,2012:1-15.
[15] WEN Zhenshu.New exact explicit nonlinear wave solutions for the Broer-Kaup equation[J].Journal of Applied Mathematics,2014,2014:1-7.
[16] 温振庶.耦合的修正变系数KdV方程的非线性解[J].华侨大学学报(自然科学版),2014,35(3):597-600.
[17] 温振庶.几类非线性数学物理方程及系统生物学模型的研究[D].广州:华南理工大学,2012:1-143.
[18] 刘正荣.分支方法与广义 CH 方程的显式周期波解[J]. 华南理工大学学报(自然科学版),2007,35(10):227-232.
[19] 唐民英,王瑞琦.具有高阶非线性项的广义 KdV 方程的孤立波及其分支[J].中国科学:A 辑,2002,32(5):398-409.
[20] 曹军,鲁慧媛.广义 Davey-Stewartson 的精确解[J].上海师范大学学报(自然科学版),2015,44(3):330-338.
[21] SONG M,LIU Z. Qualitative analysis and explicit traveling wave solutions for the Davey-Stewartson equation[J].Mathematical Methods in the Applied Sciences,2014,37(3):393-401.

备注/Memo

备注/Memo:
收稿日期: 2015-11-19
通信作者: 温振庶(1984-),男,副教授,博士,主要从事微分方程与动力系统的研究.E-mail:wenzhenshu@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(61573004, 11401230); 福建省自然科学基金资助项目(2015J05008); 福建省教育厅科技项目(JA14023)
更新日期/Last Update: 2016-05-20