参考文献/References:
[1] YAN Zhenya.Similarity transformations and exact solutions for a family of higher-dimensional generalized Boussinesq equations[J].Physics Letters A,2007,361(3):223-230.
[2] GUO Yunxi,LAI Shaoyong.New exact solutions for an(n+1)-dimensional generalized Boussinesq equation[J].Nonlinear Analysis: Theory, Methods and Applications,2010,72(6):2863-2873.
[3] LIU Changfu,DAI Zhengde.Exact periodic solitary wave solutions for the(2+1)-dimensional Boussinesq equation[J].Journal of Mathematical Analysis and Applications,2010,367(2):444-450.
[4] ABDELRADY A,OSMAN E,KHALFALLAH M.On soliton solutions of the(2+1)-dimensional Boussinesq equation[J].Applied Mathematics and Computation,2012,219(8):3414-3419.
[5] SONG Ming,SHAO Shuguang.Exact solitary wave solutions of the generalized(2+1)-dimensional Boussinesq equation[J].Applied Mathematics and Computation,2010,217(7):3557-3563.
[6] 刘正荣,唐昊.KdV方程和mKdV方程的新奇异解[J].华南理工大学学报(自然科学版),2012,40(10):96-101.
[7] WEN Zhenshu.Bifurcation of solitons, peakons, and periodic cusp waves for θ-equation[J].Nonlinear Dynamics,2014,77(1/2):247-253.
[8] WEN Zhenshu.Several new types of bounded wave solutions for the generalized two-component Camassa-Holm equation[J].Nonlinear Dynamics,2014,77(3):849-857.
[9] WEN Zhenshu.Bifurcations and nonlinear wave solutions for the generalized two-component integrable Dullin-Gottwald-Holm system[J].Nonlinear Dynamics,2015,82(1/2):767-781.
[10] WEN Zhenshu.Extension on peakons and periodic cusp waves for the generalization of the Camassa-Holm equation[J].Mathematical Methods in the Applied Sciences,2015,38(11):2363-2375.
[11] WEN Zhenshu,LIU Zhengrong.Bifurcation of peakons and periodic cusp waves for the generalization of the camassa-holm equation[J].Nonlinear Analysis: Real World Applications,2011,12(3):1698-1707.
[12] WEN Zhenshu,LIU Zhengrong,SONG Ming.New exact solutions for the classical drinfel’d-sokolov-wilson equation[J].Applied Mathematics and Computation,2009,215(6):2349-2358.
[13] WEN Zhenshu.Bifurcation of traveling wave solutions for a two-component generalized θ-equation[J].Mathematical Problems in Engineering,2012,2012:1-17.
[14] WEN Zhenshu.Extension on bifurcations of traveling wave solutions for a two-component fornberg-whitham equation[J].Abstract and Applied Analysis,2012,2012:1-15.
[15] WEN Zhenshu.New exact explicit nonlinear wave solutions for the Broer-Kaup equation[J].Journal of Applied Mathematics,2014,2014:1-7.
[16] 温振庶.耦合的修正变系数KdV方程的非线性解[J].华侨大学学报(自然科学版),2014,35(3):597-600.
[17] 温振庶.几类非线性数学物理方程及系统生物学模型的研究[D].广州:华南理工大学,2012:1-143.
[18] 刘正荣.分支方法与广义 CH 方程的显式周期波解[J]. 华南理工大学学报(自然科学版),2007,35(10):227-232.
[19] 唐民英,王瑞琦.具有高阶非线性项的广义 KdV 方程的孤立波及其分支[J].中国科学:A 辑,2002,32(5):398-409.
[20] 曹军,鲁慧媛.广义 Davey-Stewartson 的精确解[J].上海师范大学学报(自然科学版),2015,44(3):330-338.
[21] SONG M,LIU Z. Qualitative analysis and explicit traveling wave solutions for the Davey-Stewartson equation[J].Mathematical Methods in the Applied Sciences,2014,37(3):393-401.