[1]黄心中,占龙俊.双调和映照的单叶性与线性连结性[J].华侨大学学报(自然科学版),2016,37(3):375-379.[doi:10.11830/ISSN.1000-5013.2016.03.0375]
 HUANG Xinzhong,ZHAN Longjun.Univalence and Linear Connetivity of Biharmonic Mappings[J].Journal of Huaqiao University(Natural Science),2016,37(3):375-379.[doi:10.11830/ISSN.1000-5013.2016.03.0375]
点击复制

双调和映照的单叶性与线性连结性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第3期
页码:
375-379
栏目:
出版日期:
2016-05-09

文章信息/Info

Title:
Univalence and Linear Connetivity of Biharmonic Mappings
文章编号:
1000-5013(2016)03-0375-05
作者:
黄心中 占龙俊
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
HUANG Xinzhong ZHAN Longjun
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
双调和映照 凸映照 线性连结性 单叶性
Keywords:
biharmonic mapping covex mapping linear connectivity univalence
分类号:
O174.51;O174.55
DOI:
10.11830/ISSN.1000-5013.2016.03.0375
文献标志码:
A
摘要:
假设F(z)=|z|2g(z)+h(z)为单位圆盘D={z||z|<1}上的双调和映照,其中,0<c≤||hz(z)|-|h(-overz)(z)||,|gz(z)|+|g(-overz)(z)|≤Λ,z∈D.研究F(z)的单叶性、F(D)线性连结性、h(z)的单叶性与 h(D)线性连结性问题,得到h(z)与F(z)之间的相互对应关系.
Abstract:
Suppose that F(z)=|z|2g(z)+h(z)is a biharmonic mapping on the unit disk D={z||z|<1}, and 0<c≤||hz(z)|-|h(-overz)(z)||,|gz(z)|+|g(-overz)(z)|≤Λ,z∈D, we consider the relation between h(z)and F(z)for their univalence and linear connetivity of h(D)and F(D)under some conditions, we establish that if h(z)is univalent and h(D)is linear connected domain, so are F(z)and F(D), and vice versa.

参考文献/References:

[1] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42(10):689-698.
[2] ABDULHADI Z,MUHANNA Y,KHURI S.On univalent solutions of the biharmonic equations[J].Inequal Appl,2005(5):469-478.
[3] CHUAQUI M,HERNáNDEZ R.Univalent harmonic mappings and linearly connected domains[J].J Math Anal Appl,2007,33(2):1189-1194.
[4] HUANG Xinzhong.Locally univalent harmonic mappings with linearly connected image domains[J].Chinese Ann Math Ser A,2010,31(A5):625-630.
[5] 王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225-229.
[6] 石擎天,黄心中.调和映照与其剪切函数的单叶性[J].华侨大学学报(自然科学版),2013,34(3):334-338.
[7] POMMERENKE C.Boundary behaviour of conformal maps[M],Berlin:Springer-Verlag,1992:106-107.
[8] CHEN Shaolin,PONNUSAMY S,RASILA A et al.Linear connectivity, Schwarz-Pick lemma and univalency criteria for planar harmonic mappings[EB/OL].[2015-01-05] http://arxiv.org /abs/1404.4155.
[9] HERNáNDEZ R,MARTíN M J.Stable geometric properities of analytic and harmonic functions[J].Math Proc Camb Phil Soc,2013,155(2):343-359.
[10] HUANG Xinzhong.Harmonic quasiconformal mappings on the upper half-plane[J].Complex Variables and Elliptic Equations,2013,58(7):1005-1011.
[11] 夏小青,黄心中.一类双调和映照的单叶半径估计[J].华侨大学学报(自然科学版),2011,32(2):218-221.
[12] 占龙俊,黄心中.调和映照与像域为线性连结的剪切函数的关系[J].华侨大学学报(自然科学版),2015,36(5):603-608.

相似文献/References:

[1]吴东东,陈行堤.右半平面调和映照的卷积[J].华侨大学学报(自然科学版),2017,38(3):430.[doi:10.11830/ISSN.1000-5013.201703026]
 WU Dongdong,CHEN Xingdi.Convolution of Harmonic Mapping in Right-Half Plane[J].Journal of Huaqiao University(Natural Science),2017,38(3):430.[doi:10.11830/ISSN.1000-5013.201703026]

备注/Memo

备注/Memo:
收稿日期: 2015-10-28
通信作者: 黄心中(1957-),男,教授,博士,主要从事函数论的研究.E-mail:huangxz@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11471128); 华侨大学中青年教师科研提升资助计划(ZQN-YX110)
更新日期/Last Update: 2016-05-20