参考文献/References:
[1] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42(10):689-698.
[2] ABDULHADI Z,MUHANNA Y,KHURI S.On univalent solutions of the biharmonic equations[J].Inequal Appl,2005(5):469-478.
[3] CHUAQUI M,HERNáNDEZ R.Univalent harmonic mappings and linearly connected domains[J].J Math Anal Appl,2007,33(2):1189-1194.
[4] HUANG Xinzhong.Locally univalent harmonic mappings with linearly connected image domains[J].Chinese Ann Math Ser A,2010,31(A5):625-630.
[5] 王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225-229.
[6] 石擎天,黄心中.调和映照与其剪切函数的单叶性[J].华侨大学学报(自然科学版),2013,34(3):334-338.
[7] POMMERENKE C.Boundary behaviour of conformal maps[M],Berlin:Springer-Verlag,1992:106-107.
[8] CHEN Shaolin,PONNUSAMY S,RASILA A et al.Linear connectivity, Schwarz-Pick lemma and univalency criteria for planar harmonic mappings[EB/OL].[2015-01-05] http://arxiv.org /abs/1404.4155.
[9] HERNáNDEZ R,MARTíN M J.Stable geometric properities of analytic and harmonic functions[J].Math Proc Camb Phil Soc,2013,155(2):343-359.
[10] HUANG Xinzhong.Harmonic quasiconformal mappings on the upper half-plane[J].Complex Variables and Elliptic Equations,2013,58(7):1005-1011.
[11] 夏小青,黄心中.一类双调和映照的单叶半径估计[J].华侨大学学报(自然科学版),2011,32(2):218-221.
[12] 占龙俊,黄心中.调和映照与像域为线性连结的剪切函数的关系[J].华侨大学学报(自然科学版),2015,36(5):603-608.
相似文献/References:
[1]吴东东,陈行堤.右半平面调和映照的卷积[J].华侨大学学报(自然科学版),2017,38(3):430.[doi:10.11830/ISSN.1000-5013.201703026]
WU Dongdong,CHEN Xingdi.Convolution of Harmonic Mapping in Right-Half Plane[J].Journal of Huaqiao University(Natural Science),2017,38(3):430.[doi:10.11830/ISSN.1000-5013.201703026]