[1]许建豪.采用向量空间模型的个性化信息检索方法[J].华侨大学学报(自然科学版),2016,37(2):175-178.[doi:10.11830/ISSN.1000-5013.2016.02.0175]
 XU Jianhao.Research on Personalized Information Retrieval Method Using Vector Space Model[J].Journal of Huaqiao University(Natural Science),2016,37(2):175-178.[doi:10.11830/ISSN.1000-5013.2016.02.0175]
点击复制

采用向量空间模型的个性化信息检索方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第2期
页码:
175-178
栏目:
出版日期:
2016-03-20

文章信息/Info

Title:
Research on Personalized Information Retrieval Method Using Vector Space Model
文章编号:
1000-5013(2016)02-0175-04
作者:
许建豪
南宁职业技术学院 信息工程学院, 广西 南宁 530008
Author(s):
XU Jianhao
School of Information Engineering, Nanning College for Vocational Technology, Nanning 530008, China
关键词:
信息检索 向量空间模型 个性化需求 语料库
Keywords:
information retrieval vector space model personalized needs corpus
分类号:
TP181
DOI:
10.11830/ISSN.1000-5013.2016.02.0175
文献标志码:
A
摘要:
为了提升检索结果与用户个性化需求的符合程度,依托向量空间模型提出一种新的检索方法.将用户查询关键词和语料库内的文本信息都映射为向量,从而把检索过程转化为向量相似性的比对.在比对过程中,通过关键词权重突出用户个性化需求,通过余弦相似度判断符合程度.实验结果表明:文中方法的检索结果与用户需求的符合程度明显提高.
Abstract:
In order to improve matching degree between the retrieval results and of user’s personalized needs, a new method based on vector space model is proposed in this paper. Maps the user query keywords and the text information in the database to the many vectors, and then transforms the retrieval process to the comparison of the vector similarity. In the process, the user’s personalized needs are highlighted by the keyword weight, and the matching degree is determined by the cosine similarity. Experimental results show that the retrieval results of this method are significantly improved with the user’s requirements.

参考文献/References:

[1] 邹聪.浅析网络免费学术资源在医学信息检索教学中的有效应用[J].内蒙古科技与经济,2014,316(18):74-76.
[2] MARS B,HERON J,BIDDLE L,et al.Exposure to, and searching for, information about suicide and self-harm on the Internet: Prevalence and predictors in a population based cohort of young adults[J].Journal of Affective Disorders,2015,185:239-245.
[3] 陈叶旺,余金山.一种改进的朴素贝叶斯文本分类方法[J].华侨大学学报(自然科学版),2011,32(4):401-404.
[4] DARABAD V P,VAKILIAN M,BLACKBURN T R.An efficient PD data mining method for power transformer defect models using SOM technique[J].International Journal of Electrical Power and Energy Systems,2015,71(4):373-382.
[5] MADISON A,BUETTI S,LLEARS A.Singleton search performance predicts performance on heterogeneous displays: Evidence in support of the information theory of vision[J].Journal of Vision,2015,15(12):12-14.
[6] MONCHAUX S,AMADIEU F,CHEVALIER A.Query strategies during information searching: Effects of prior domain knowledge and complexity of the information problems to be solved[J].Information Processing and Management,2015,51(5):557-569.
[7] TANG Yuzhe,LIU Ling.Privacy preserving multi-keyword search in information networks[J].IEEE Transactions on Knowledge and Data Engineering,2015,27(9):2424-2437.
[8] 邹向坤.基于Delphi的病历卡片信息检索系统的设计与实现[J].河北北方学院学报(自然科学版),2015,31(4):113-115.
[9] 陈秀丽.基于信息需求下电子商务档案信息检索的智能化研究[J].档案天地,2015(10):19-21.
[10] 甘丽新,万常选,王明文.基于层次依赖的Markov网络信息检索扩展模型[J].计算机科学与探索,2014,8(12):1485-1493.
[11] KUMAR A V,ALI R F M,CAO Yu.Application of data mining tools for classification of protein structural class from residue based averaged NMR chemical shifts[J].Biochimica Et Biophysica Acta,2015,1854(10):1545-1552.

相似文献/References:

[1]寸待杰,刘韶涛.采用内容挖掘的缅甸文字相似文档检索[J].华侨大学学报(自然科学版),2013,34(5):521.[doi:10.11830/ISSN.1000-5013.2013.05.0521]
 CUN Dai-jie,LIU Shao-tao.Retrieval of the Most Similar Myanmar Document Using Content Mining[J].Journal of Huaqiao University(Natural Science),2013,34(2):521.[doi:10.11830/ISSN.1000-5013.2013.05.0521]

备注/Memo

备注/Memo:
收稿日期: 2015-12-25
通信作者: 许建豪(1977-),男,副教授,主要从事网络技术及信息检索的研究.E-mail:jianhaoxu@yeah.net.
基金项目: 广西高校科研基金资助项目(YB2014495)
更新日期/Last Update: 2016-03-20