[1]林珍连.上半平面某类调和拟共形映照的特征估计[J].华侨大学学报(自然科学版),2016,37(1):125-128.[doi:10.11830/ISSN.1000-5013.2016.01.0125]
 LIN Zhenlian.Dilatation Estimate for Some Kinds of Harmonic Quasiconformal Mappings of the Half Plane Onto Itself[J].Journal of Huaqiao University(Natural Science),2016,37(1):125-128.[doi:10.11830/ISSN.1000-5013.2016.01.0125]
点击复制

上半平面某类调和拟共形映照的特征估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第1期
页码:
125-128
栏目:
出版日期:
2016-01-03

文章信息/Info

Title:
Dilatation Estimate for Some Kinds of Harmonic Quasiconformal Mappings of the Half Plane Onto Itself
文章编号:
1000-5013(2016)01-0125-04
作者:
林珍连
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
LIN Zhenlian
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
最大特征 拟共形延拓 调和拟共形映照 Hilbert变换
Keywords:
maximal dilatation quasiconformal extension harmonic quasiconformal mapping Hilbert transformation
分类号:
O174.55
DOI:
10.11830/ISSN.1000-5013.2016.01.0125
文献标志码:
A
摘要:
给出以h(x)=x+k/πsin πx,0≤k<1为边界值的上半平面到自身的调和拟共形延拓表达式及其特征估计.结果表明:该调和拟共形延拓比Beurling-Ahlfors延拓更优.
Abstract:
In this paper, the harmonic quasiconformal extension expressions for upper half plane onto itself with boundary correspondence h(x)=x+k/πsin πx, 0≤k<1 and their dilatations estimates are given, which shows that it is better than Beurling-Ahlfors extension.

参考文献/References:

[1] BEURLING A,AHLFORS L.The boundary correspondence under quasiconformal mappings[J].Acta Mathematica,1956,96(1):125-142.
[2] LEHTINEN M.Remarks on the maximal dilation of Beurling-Ahlfors extension[J].Ann Acad Sci Fenn AI Math,1984(9):133-139.
[3] DOUADY A,EARLE C J.Conformally natural extension of homeomorphisms of the circle[J].Acta Mathematica,1986,157(1):23-48.
[4] REICH E.A quasiconformal extension using parametric representation[J].Journal d Analyse Mathématique,1990,54(1):246-258.
[5] PAVLOVIC M.Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disks[J].Ann Acad Sci Fenn Math,2002,27(2):365-372.
[6] KALAJ D,PAVLOVIC M.Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane[J].Ann Acad Sci Fenn Math,2005,30(1):159-165.
[7] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bulletin of the American Mathematical Society,1936,42(10):689-692.
[8] DUREN P.Harmonic mappingd in the plane[M].Cambridge:Cambridge University Press,2004:479,481-506.
[9] CLUNIE J,SHELL-SMALL T,CLUNIE J.Harmonic univalent functions[J].Ann Acad Sci Fenn Ser A I Math,1984(9):3-25.
[10] GARNETT J B.Bounded analytic function[M].New York:Academic Press,1981:1-406.
[11] 林珍连.某些调和单叶函数的稳定性及系数估计[J].华侨大学学报(自然科学版),2009,30(6):718-719.

相似文献/References:

[1]谢志春,黄心中.一类Nehari函数族的拟共形延拓与系数偏差[J].华侨大学学报(自然科学版),2011,32(3):343.[doi:10.11830/ISSN.1000-5013.2011.03.0343]
 XIE Zhi-chun,HUANG Xin-zhong.On the Quasiconformal Extensions and Coefficients Distortion for a Nehari Class[J].Journal of Huaqiao University(Natural Science),2011,32(1):343.[doi:10.11830/ISSN.1000-5013.2011.03.0343]

备注/Memo

备注/Memo:
收稿日期: 2015-08-25
通信作者: 林珍连(1970-),女,副教授,主要从事函数论的研究.E-mail:zhenlian@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11471128); 国家青年科学基金资助项目(11501220); 福建省自然科学基金计划资助项目(2014J01013); 华侨大学中青年教师科研提升资助计划(ZQN-YX110)
更新日期/Last Update: 2016-01-20