[1]张洪涛,代永涛,凃玲英.采用横向铁磁交互作用的随机场伊辛模型的量子退火算法[J].华侨大学学报(自然科学版),2016,37(1):7-11.[doi:10.11830/ISSN.1000-5013.2016.01.0007]
 ZHANG Hongtao,DAI Yongtao,TU Lingying.Quantum Annealing of the Random-Field Ising Model Based on Transverse Ferromagnetic Interactions[J].Journal of Huaqiao University(Natural Science),2016,37(1):7-11.[doi:10.11830/ISSN.1000-5013.2016.01.0007]
点击复制

采用横向铁磁交互作用的随机场伊辛模型的量子退火算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第1期
页码:
7-11
栏目:
出版日期:
2016-01-03

文章信息/Info

Title:
Quantum Annealing of the Random-Field Ising Model Based on Transverse Ferromagnetic Interactions
文章编号:
1000-5013(2016)01-0007-05
作者:
张洪涛12 代永涛12 凃玲英12
1. 湖北工业大学 纳米电子技术与微系统实验室, 湖北 武汉 430068;2. 湖北工业大学 电气与电子工程学院, 湖北 武汉 430068
Author(s):
ZHANG Hongtao12 DAI Yongtao12 TU Lingying12
1. Nanoelectron Technology and Micro-system Laboratory, Hubei University of Technology, Wuhan 430068, China; 2. School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
关键词:
横向铁磁交互作用 随机场伊辛模型 量子退火 模拟退火
Keywords:
transverse ferromagnetic interactions random-field Ising model quantum annealing simulated annealing
分类号:
TP301
DOI:
10.11830/ISSN.1000-5013.2016.01.0007
文献标志码:
A
摘要:
通过数值对角化分析瞬时基态和第一激发态,提出基于横向铁磁交互的量子退火的优势.采用贝特近似作为实际执行的算法,给出相应的模拟结果,并对传统量子退火、基于横向铁磁交互作用的量子退火和模拟退火算法的剩余误差进行比较.结果表明:所提算法能有效提高传统量子退火在随机场伊辛模型中的收敛速度;利用量子波动的选择空间可以有效实现量子退火的最佳性能.
Abstract:
Through the numerical analysis of the instantaneous ground state and the first excited state, the advantages of quantum annealing based on the transverse ferromagnetic interactions are presented. Using the Bethe approximation as an algorithm for practical implementation, the simulation results are given accordingly. Then the residual errors of conventional quantum annealing, quantum annealing by transverse ferromagnetic interactions, and simulated annealing are compared. The results show that the proposed algorithm can effectively improve the convergence speed of traditional quantum annealing in the random-field Ising model. And the best performance of quantum annealing can be achieved by using the choice space of the quantum fluctuation.

参考文献/References:

[1] 杜卫林,李斌,田宇.量子退火算法研究进展[J].计算机研究与发展,2008,45(9):1501-1508.
[2] 王凌.智能优化算法及其应用[M].北京:清华大学出版社,2004:17-35.
[3] 张德富,彭煜,朱文兴,等.求解三维装箱问题的混合模拟退火算法[J].计算机学报,2009,32(11):2147-2156.
[4] KIRKPATRICK S C,GELATT C D,VECCHI M P,et al.Optimizationby simulated annealing[J].Science,1983,220(4598):671- 680.
[5] HOPFIELD J J,TANK D W.Computation of decisions: A model[J].Science,1986,233(4764):625-633.
[6] KADOWAKI T.Study of optimization problems by quantum annealing[D].Tokyo:Tokyo Institute of Technology,2002:15-40.
[7] MARTONAK R,SANTORO G E,TOSATTI E.Quantum annealing by the path-integral Monte carlo method: The two-dimensional random Ising model[J].Physical Review B,2002,66(9):351-363.
[8] LORENZO S,SANTORO G E.Quantum annealing of an Ising spin-glass by Green’s function Monte carlo[J].Physical Review E,2007,75(3):036703.
[9] SARJALA M,PETAJA V,ALAVA M.Optimization in random field Ising models by quantum annealing[J].Journal of Statistical Mechanics:Theory and Experiment,2006,16(1):79-107.
[10] KADOWAKI T,NISHIMORI H.Quantum annealing in the transverse Ising model[J].Physical Review E,1998,58(5):5355.
[11] BOIXO S,ALBASH T,SPEDALIERI F M,et al.Experimental signature of programmable quantum annealing[J].Nature Communications,2012,4(3):131-140.
[12] BOIXO S,RONNOW T F,ISAKO S V,et al.Evidence for quantum annealing with more than one hundred qubits[J].Nature Physics,2014,10(3):218-224.
[13] FYTAS N G,MARTIN-MAYOR V.Universality in the three-dimensional random-field Ising model[J].Phys Rev Lett,2013,110(1):019903.
[14] 黄纯青,邓绍军.三维Ising模型的蒙特卡罗模拟[J].计算物理,2009,26(6):937-941.
[15] 张映玉,付樟华.绝热量子优化算法研究进展[J].计算机工程与科学,2015,37(3):429-433.
[16] 曹怀信,王素媛.量子绝热定理研究[J].纺织高校基础科学学报,2015,28(2):131-138.
[17] CAO Huaixin,GUO Zhihua,CHEN Zhengli.CPT-frames for non-Hermitian Hamiltonians[J].Commun TheorPhys,2013,60(9):328-334.
[18] SEMKIN S V,SMAGIN V P.Bethe approximation in the Ising model with mobile impurities[J].Physics of the Solid State,2015,57(5):943-948.
[19] MEILIKHOV E Z,FARZETDINOVA R M.Effective field theory for disordered magnetic alloys[J].Physics of the Solid State,2014,56(4):707-714.
[20] ALAVAl M,DUXBURY P,MOUKARAEL C,et al.Exact combinatorial algorithms: Ground states of disordered systems[M].New York:Phase Transitions and Critial Phenomena,2001:143-317.

备注/Memo

备注/Memo:
收稿日期: 2015-09-18
通信作者: 张洪涛(1963-),男,教授,博士,主要从事量子通信及计算技术、嵌入式视频监控系统和数字信号处理的研究.E-mail:zhanght@mail.hbut.edu.cn.
基金项目: 湖北省武汉市科技局“十城千辆新动力汽车计划”基金资助项目(2013011801010600)
更新日期/Last Update: 2016-01-20