[1]李瑾.Caputo型分数阶微积分求解及其误差估计[J].华侨大学学报(自然科学版),2015,36(6):721-725.[doi:10.11830/ISSN.1000-5013.2015.06.0721]
 LI Jin.Algorithm and Error Estimate on the Fractional Differential Equation With Caputo Derivative[J].Journal of Huaqiao University(Natural Science),2015,36(6):721-725.[doi:10.11830/ISSN.1000-5013.2015.06.0721]
点击复制

Caputo型分数阶微积分求解及其误差估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第36卷
期数:
2015年第6期
页码:
721-725
栏目:
出版日期:
2015-11-10

文章信息/Info

Title:
Algorithm and Error Estimate on the Fractional Differential Equation With Caputo Derivative
文章编号:
1000-5013(2015)06-0721-05
作者:
李瑾
河南财政税务高等专科学校 信息工程系, 河南 郑州 451464
Author(s):
LI Jin
Department of Information Technology, Henan Finance and Taxation College, Zhengzhou 451464, China
关键词:
分数阶微积分 Caputo型 Chebyshev 多项式 误差估计 唯一性
Keywords:
fractional differential equation Caputo derivative Chebyshv polynomial error estimate uniqueness
分类号:
O155
DOI:
10.11830/ISSN.1000-5013.2015.06.0721
文献标志码:
A
摘要:
研究Caputo 型分数阶微分函数的正解情况,考察其正解的唯一性问题,进而研究其数值求解的误差估计,所得结果拓展了Wyss的研究成果.
Abstract:
The development speed of the reactional differential equation is slow due to the application nonlocality and the calculative complexity. In this paper, we will discuss the positive solution to the fractional differential equation with Caputo derivative based on the current research. Then we also study the uniqueness of the solution and discern the deviation comparing with numerical solution. The paper expands Wyss’ research and conclusion.

参考文献/References:

[1] PODLUBNY I.Fractional differential equations, mathematics in science and engineering[M].New York:Academic Press,1996:120-125.
[2] MILLER K S,Ross B.An introduction to the fractional calculus and fractional differential equations [M].New York:John Wiley,1998:76-91.
[3] HIEBER M.Laplace transforms and α-time integrated semigroups[J].Forum Math,1991,120(3):595-612.
[4] 徐明瑜,谭文长.中间过程、临界现象:分数阶算子理论、方法、进展及其在现代力学中的应用[J].中国科学(G辑),2006,36(3):198-229.
[5] DIETHELM K.An improvement of a nonclassical numerical method for the computation of fractional derivatives[J].Numer Algor,2009,131(1):209-254.
[6] SUGIURA H,HASEGAWA T.Quadrature rule for Abel’s equations: Uniformly approximating fractional derivatives[J].Comput Appl Math,2009,223(1):460-471.
[7] FOX C.The G and H functions as summertrical Fourier kernels[J].Trans Amer Math Soc,1961(98):396-410.
[8] ELLIOTT D.ELLIOTT Truncation errors in two Chebyshev series approximations [J].Math Compute,1965(19):234-248.
[9] FUJITA Y. Fujita Cauchy problems of fractional order and stable processes[J]. Japan J Appl Math, 1990, 7(3): 459-476.
[10] FUJITA Y.Integro differential equation which interpolates the wave equation[J].Osaka J Math,1990,116(27):797-804.
[11] YCAN L,AGTTAWAL O P.A numerical scheme for dynamic systems containing fractional derivatives[J].ASME J Vibr Acoust,2002,124(2):321-324.
[12] HASEGAVA T,SUGIURA H.Uniform approximation to fractional derivatives of functions of algebraic; singularity[J].Compute Appl Math,2009,228(1):247-253.
[13] SCHNEIDER W R,WYSS W.Fractional diffusion and wave equations[J].J Math Phys,1989,134(30):129-139.
[14] FUJITA Y.Energy inequalities for interop-partial differential equations with Riemann Lowville integrals[J].SIAM J Math Anal,1992(23):1179-1201.
[15] BAI Zhanbing.Eigenvalue intervals for a class of fractional boundary value problem[J].Computers and Mathematics with Applications,2012,64(10):3248-3261.

备注/Memo

备注/Memo:
收稿日期: 2015-10-08
通信作者: 李瑾(1961-),女,副教授,主要从事微积分及经济数学的研究.E-mail:396319685@qq.com.
基金项目: 河南省2014年软科学研究计划项目(142400411076)
更新日期/Last Update: 2015-11-20