[1]李国庆,尹洪胜.采用遗传算法的网络优化技术[J].华侨大学学报(自然科学版),2015,36(6):663-666.[doi:10.11830/ISSN.1000-5013.2015.06.0663]
 LI Guoqing,YIN Hongsheng.Network Optimization Technique Using Genetic Algorithm[J].Journal of Huaqiao University(Natural Science),2015,36(6):663-666.[doi:10.11830/ISSN.1000-5013.2015.06.0663]
点击复制

采用遗传算法的网络优化技术()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第36卷
期数:
2015年第6期
页码:
663-666
栏目:
出版日期:
2015-11-10

文章信息/Info

Title:
Network Optimization Technique Using Genetic Algorithm
文章编号:
1000-5013(2015)06-0663-04
作者:
李国庆 尹洪胜
中国矿业大学 信息与电气工程学院, 江苏 徐州 221008
Author(s):
LI Guoqing YIN Hongsheng
School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China
关键词:
树型网络 网络优化 遗传算法 适应度函数
Keywords:
tree-shape network network optimization genetic algorithm fitness function
分类号:
TP312;TP393
DOI:
10.11830/ISSN.1000-5013.2015.06.0663
文献标志码:
A
摘要:
针对树型网络的拓扑结构和数学模型,从个体编码、种群初始化、种群进化、适应度函数等方面构建基于遗传算法的网络优化方法.实验结果表明:所构建的方法进一步修正了适应度函数,增强了弱势个体被选择的概率,避免遗传算法优化过程的过早收敛问题,缩短了执行时间,取得了较佳的网络优化结果.
Abstract:
Based on genetic algorithm, a network optimization method is proposed according to the topology and mathematical model of tree-shape network from the aspects of individual encoding, population initialization, population evolution, fitness function and so on. Experimental results show that the proposed method can further modify the fitness function, enhance the probability of the weak individuals’ being chosen, avoid the premature convergence of genetic algorithm, and reduce the execution time. The results show good networking optimization.

参考文献/References:

[1] 邓亮,赵进,王新.基于遗传算法的网络编码优化[J].软件学报,2009,20(8):2269-2279.
[2] MICHAEL B,RICHARD M,SLYKE V.Backtracking algorithms for network reliability analysis[J].Annals of Discrete Mathematics,2012,1:221-235.
[3] 吴琼,郑士源,朱太球.基于列生成算法的集装箱班轮运输网络优化[J].上海海事大学学报,2014,35(1):29-35.
[4] GREINER D,WINTER G,EMPERADOR J M.Optimising frame structures by different strategies of genetic algorithms[J].Finite Elements in Analysis and Design,2001,37(5):381-442.
[5] AMORETTI M,GRAZIOLI A,ZANICHELLI F.Towards a formal approach to mobile cloud computing[C]//Euromicro International Conference on Parallel, Distributed, and Network-Based Processing.Torino:IEEE Press,2014:743-750.
[6] BILGAIYAN S,SAGNIKA S,DAS M.A multi-objective cat swarm optimization algorithm for workflow scheduling in cloud computing environment[J].Advances in Intelligent Systems and Computing,2015,308(1):73-84.
[7] 赵云丰,付冬梅,尹怡欣,等.一种改进的人工免疫网络优化算法及其性能分析[J].自然科学进展,2009,19(4):434-445.
[8] 李柞泳,汪嘉杨,郭淳,等.基于蚁群算法的BP网络优化算法[J].计算机应用,2010,30(6):1513-1517.
[9] 乔俊飞,逢泽芳,韩红桂.基于改进粒子群算法的污水处理过程神经网络优化控制[J].智能系统学报,2012,7(5):429-437.
[10] 樊富有,杨国武,乐千恺,等.基于量子遗传算法的无线视频传感网络优化覆盖算法[J].通信学报,2015,36(6):22-27.
[11] 杨四海.TSP的等价解及其对免疫遗传算法的干扰[J].华侨大学学报(自然科学版),2007,28(1):27-29.
[12] 庄健,杨清宇,杜海峰,等.一种高效的复杂系统遗传算法[J].软件学报,2010,21(11):2790-2801.
[13] 都成娟,李和成.多下层分式双层规划问题的改进遗传算法[J].计算机应用,2012,32(11):2998-3001.
[14] 黄江波,付志红.基于自适应遗传算法函数优化与仿真[J].计算机仿真,2011,28(5):237-240.

备注/Memo

备注/Memo:
收稿日期: 2015-10-08
通信作者: 李国庆(1966-),男,副教授,主要从事软件工程、计算机网络应用技术的研究.E-mail:xzcxlgq@126.com.
基金项目: 国家自然科学基金资助项目(61379100)
更新日期/Last Update: 2015-11-20