[1]占龙俊,黄心中.调和映照与像域为线性连结的剪切函数的关系[J].华侨大学学报(自然科学版),2015,36(5):603-608.[doi:10.11830/ISSN.1000-5013.2015.05.0603]
 ZHAN Long-jun,HUANG Xin-zhong.Relation Between Harmonic Mapping and Its Shear Function With Linearly Connected Image Domain[J].Journal of Huaqiao University(Natural Science),2015,36(5):603-608.[doi:10.11830/ISSN.1000-5013.2015.05.0603]
点击复制

调和映照与像域为线性连结的剪切函数的关系()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第36卷
期数:
2015年第5期
页码:
603-608
栏目:
出版日期:
2015-09-20

文章信息/Info

Title:
Relation Between Harmonic Mapping and Its Shear Function With Linearly Connected Image Domain
文章编号:
1000-5013(2015)05-0603-06
作者:
占龙俊 黄心中
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
ZHAN Long-jun HUANG Xin-zhong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
调和映照 线性连结 调和拟共形映照 α近于凸.
Keywords:
harmonic mapping linearly connected domain harmonic quasiconformal mapping α-close-to convex
分类号:
O174.51;O174.55
DOI:
10.11830/ISSN.1000-5013.2015.05.0603
文献标志码:
A
摘要:
设f(z)=h(z)+g(z)^-为单位圆盘D={z||z|<1}上的局部单叶调和函数,若剪切函数h(z)-g(z)在D上单叶且像域具有M线性连结,研究当伸缩商|ω(z)|=|(g’(z))/(h’(z))|在一定条件下,h(z),Fλ(z)=h(z)+λ×g(z)^- 等函数的单叶性及线性连结性问题,改进推广了陈少林的相应结果.
Abstract:
Suppose that f(z)=h(z)+g(z)^- is a locally univalent harmonic mapping on the unit disk D={z||z|<1}, if its shear function h(z)-g(z)is univalent with linearly connected image domain, we consider the univalence and the image properties of h(z), Fλ(z)=h(z)+λg(z)^- under some restriction conditions of the dilatation of f(z). Our results improve and generalize some results made in CHEN Shao-lin.

参考文献/References:

[1] LEWY H.On the non-vanishing of the jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42(10):689-698.
[2] CHUAQUI M,HERNANDEZ R.Univalent harmonic mappings and linearly connected domains[J].J Math Anal Appl,2007,33(2):1189-1194.
[3] HUANG Xin-zhong.Locally univalent harmonic mappings with linearly connected image domains[J].Chinese Ann Math Ser A(Chinese),2010,31A(5):625-630.
[4] 王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报:自然科学版,2013,34(2):225-229.
[5] 石擎天,黄心中.调和映照与其剪切函数的单叶性[J].华侨大学学报:自然科学版,2013,34(3):334-338.
[6] HERMáNDEZ R,MARTíN M J.Stable geometric roperities of analytic and harmonic functions[J].Math Proc Camb Phil Soc,2013,155(2):343-359.
[7] HUANG Xin-zhong.Harmonic quasiconformal mappings on the upper half-plane[J].Complex Variables and Elliptic Equations,2013,58(7):1005-1011.
[8] 夏小青,黄心中.一类双调和映照的单叶半径估计[J].华侨大学学报:自然科学版,2011,32(2):218-221.
[9] POMMERENKE C.Boundary behaviour of conformal maps[M].Berlin:Springer-Verlag,1992:106-107.
[10] CHEN Shao-lin,PONNUASMY S, RASILA A,et al.Linear connectivity, Schwarz-Pick lemma and univalency criteria for planar harmonic mappings[EB/OL].[2015-01-05] .http://arxiv.org /abs/1404.4155.

相似文献/References:

[1]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
 CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(5):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[2]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
 ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(5):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[3]朱剑峰,王朝祥,黄心中.单位圆上调和映照的单叶半径[J].华侨大学学报(自然科学版),2012,33(5):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
 ZHU Jian-feng,WANG Chao-xiang,HUANG Xin-zhong.Univalent Radius of Harmonic Mapping in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2012,33(5):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
[4]李东征,陈行堤.调和映照的Landau定理[J].华侨大学学报(自然科学版),2012,33(5):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
 LI Dong-zheng,CHEN Xing-di.Landau Theorem for Planar Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(5):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
[5]吴东东,陈行堤.右半平面调和映照的卷积[J].华侨大学学报(自然科学版),2017,38(3):430.[doi:10.11830/ISSN.1000-5013.201703026]
 WU Dongdong,CHEN Xingdi.Convolution of Harmonic Mapping in Right-Half Plane[J].Journal of Huaqiao University(Natural Science),2017,38(5):430.[doi:10.11830/ISSN.1000-5013.201703026]
[6]孙乾乾,陈行堤,胡春英.(-overα)-调和映照的正规性[J].华侨大学学报(自然科学版),2020,41(3):394.[doi:10.11830/ISSN.1000-5013.201911065]
 SUN Qianqian,CHEN Xingdi,HU Chunying.Normal(-overα)-Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2020,41(5):394.[doi:10.11830/ISSN.1000-5013.201911065]
[7]李鸿萍.调和映照与调和K-拟共形映照的边界Schwarz引理[J].华侨大学学报(自然科学版),2022,43(2):279.[doi:10.11830/ISSN.1000-5013.202011023]
 LI Hongping.Boundary Schwarz Lemma for Harmonic Mappings and Harmonic K-Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2022,43(5):279.[doi:10.11830/ISSN.1000-5013.202011023]

备注/Memo

备注/Memo:
收稿日期: 2015-01-05
通信作者: 黄心中(1957-),男,教授,博士,主要从事函数论的研究.E-mail:huangxz@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11471128); 福建省自然科学基金资助项目(2014J01013)
更新日期/Last Update: 2015-09-20