参考文献/References:
[1] LEWY H.On the non-vanishing of the jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42(10):689-698.
[2] CHUAQUI M,HERNANDEZ R.Univalent harmonic mappings and linearly connected domains[J].J Math Anal Appl,2007,33(2):1189-1194.
[3] HUANG Xin-zhong.Locally univalent harmonic mappings with linearly connected image domains[J].Chinese Ann Math Ser A(Chinese),2010,31A(5):625-630.
[4] 王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报:自然科学版,2013,34(2):225-229.
[5] 石擎天,黄心中.调和映照与其剪切函数的单叶性[J].华侨大学学报:自然科学版,2013,34(3):334-338.
[6] HERMáNDEZ R,MARTíN M J.Stable geometric roperities of analytic and harmonic functions[J].Math Proc Camb Phil Soc,2013,155(2):343-359.
[7] HUANG Xin-zhong.Harmonic quasiconformal mappings on the upper half-plane[J].Complex Variables and Elliptic Equations,2013,58(7):1005-1011.
[8] 夏小青,黄心中.一类双调和映照的单叶半径估计[J].华侨大学学报:自然科学版,2011,32(2):218-221.
[9] POMMERENKE C.Boundary behaviour of conformal maps[M].Berlin:Springer-Verlag,1992:106-107.
[10] CHEN Shao-lin,PONNUASMY S, RASILA A,et al.Linear connectivity, Schwarz-Pick lemma and univalency criteria for planar harmonic mappings[EB/OL].[2015-01-05] .http://arxiv.org /abs/1404.4155.
相似文献/References:
[1]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(5):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[2]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(5):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[3]朱剑峰,王朝祥,黄心中.单位圆上调和映照的单叶半径[J].华侨大学学报(自然科学版),2012,33(5):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
ZHU Jian-feng,WANG Chao-xiang,HUANG Xin-zhong.Univalent Radius of Harmonic Mapping in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2012,33(5):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
[4]李东征,陈行堤.调和映照的Landau定理[J].华侨大学学报(自然科学版),2012,33(5):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
LI Dong-zheng,CHEN Xing-di.Landau Theorem for Planar Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(5):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
[5]吴东东,陈行堤.右半平面调和映照的卷积[J].华侨大学学报(自然科学版),2017,38(3):430.[doi:10.11830/ISSN.1000-5013.201703026]
WU Dongdong,CHEN Xingdi.Convolution of Harmonic Mapping in Right-Half Plane[J].Journal of Huaqiao University(Natural Science),2017,38(5):430.[doi:10.11830/ISSN.1000-5013.201703026]
[6]孙乾乾,陈行堤,胡春英.(-overα)-调和映照的正规性[J].华侨大学学报(自然科学版),2020,41(3):394.[doi:10.11830/ISSN.1000-5013.201911065]
SUN Qianqian,CHEN Xingdi,HU Chunying.Normal(-overα)-Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2020,41(5):394.[doi:10.11830/ISSN.1000-5013.201911065]
[7]李鸿萍.调和映照与调和K-拟共形映照的边界Schwarz引理[J].华侨大学学报(自然科学版),2022,43(2):279.[doi:10.11830/ISSN.1000-5013.202011023]
LI Hongping.Boundary Schwarz Lemma for Harmonic Mappings and Harmonic K-Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2022,43(5):279.[doi:10.11830/ISSN.1000-5013.202011023]