[1]张雅清,刘忠宝.融合全局和局部特征的图像特征提取方法[J].华侨大学学报(自然科学版),2015,36(4):406-411.[doi:10.11830/ISSN.1000-5013.2015.04.0406]
 ZHANG Ya-qing,LIU Zhong-bao.Research on Image Feature Exaction Method by Combining Global and Local Features[J].Journal of Huaqiao University(Natural Science),2015,36(4):406-411.[doi:10.11830/ISSN.1000-5013.2015.04.0406]
点击复制

融合全局和局部特征的图像特征提取方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第36卷
期数:
2015年第4期
页码:
406-411
栏目:
出版日期:
2015-07-15

文章信息/Info

Title:
Research on Image Feature Exaction Method by Combining Global and Local Features
文章编号:
1000-5013(2015)04-0406-06
作者:
张雅清1 刘忠宝2
1. 太原学院 数学系, 山西 太原 030012; 2. 中北大学 计算机与控制工程学院, 山西 太原 030051
Author(s):
ZHANG Ya-qing1 LIU Zhong-bao2
1. School of Mathematics, Taiyuan University, Taiyuan 030012, China; 2. School of Computer and Control Engineering, North University of China, Taiyuan 030051, China
关键词:
特征提取 线性判别分析 保局投影算法 全局特征 局部特征
Keywords:
feature exaction linear discriminant analysis locally preserving projections global feature local feature
分类号:
TP391
DOI:
10.11830/ISSN.1000-5013.2015.04.0406
文献标志码:
A
摘要:
针对图像特征提取无法同时利用样本的全局和局部特征的问题,提出融合全局和局部特征的特征提取方法.该方法充分利用线性判别分析和保局投影算法分别在特征提取中保持样本全局特征和局部特征方面的优势,进一步提高图像特征提取效率.首先,引入全局散度矩阵和局部散度矩阵分别表征样本的全局特征和局部特征.然后,基于同类样本尽可能紧密,异类样本尽可能远离的思想,构造最优化问题.比较实验表明:与传统的主成分分析、线性判别分析、保局投影算法相比,文中方法的工作效率有一定提高.
Abstract:
With the development of application, the main problem of image feature extraction is almost no study taking both global and local features into consideration. In view of this, feature exaction approach by combining global and local characteristics(FEM-GLC)is proposed in this paper. The advantages of linear discriminant analysis(LDA)in extracting the global feature and locally preserving projections(LPP)in preserving the local feature are taken into consideration in FEM-GLC which tries to improve the efficiencies of feature extraction. In FEM-GLC, the global divergence matrix and the local divergence matrix are introduced which respectively represents the global feature and local feature. The optimization problem of FEM-GLC is constructed based on the close relation between samples of the same class and far away between different classes. The comparative experiments with PCA, LDA and LPP on the ORL dataset and Yale dataset verify the effectiveness of FEM-GLC.

参考文献/References:

[1] 罗学刚,吕俊瑞,王华军,等.基于超像素的互惠最近邻聚类彩色图像分割[J].广西大学学报:自然科学版,2013,38(2):374-378.
[2] 刘忠宝.基于核的降维和分类方法及其应用研究[D].无锡:江南大学,2012:1-2.
[3] 陈新泉,苏锦细.基于半监督学习的k平均聚类框架[J].广西大学学报:自然科学版,2014,39(5):1074-1082.
[4] CAMACHO J,PIC J,FERRER A.Data understanding with PCA: Structural and variance information plots[J].Chemometrics and Intelligent Laboratory Systems,2010,100(1):48-56.
[5] LIPOVETSKY S.PCA and SVD with nonnegative loadings[J].Pattern Recognition,2009,42(1):68-76.
[6] LEE D D,SEUNG H S.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401(6755):788-791.
[7] RADULOVIC J,RANKOVIC V.Feedforward neural network and adaptive network-based fuzzy inference system in study of power lines[J].Expert Systems with Applications,2010,37(1):165-170.
[8] PETER N B,JOAO P H,DAVID J K,et al.Fisherfaces: Recognition using class specific linear projection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
[9] 杜家杰,段会川.MDS在企业客户分类中的应用研究[J].计算机工程与设计,2011,32(5):1658-1660.
[10] ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
[11] HE Xiao-feng,NIYOGI P.Locality preserving projections[C]//Advances in Neural Information Processing Systems.Vancouver:[s.n.],2003:153-160.
[12] LOPEZ M M,RAMIREZ J,ALVAREZ I,et al.SVM-based CAD system for early detection of the Alzheimer’s disease using kernel PCA and LDA[J].Neuroscience Letters,2009,464(3):233-238.
[13] MIKA S,RATSCH G,WESTON J,et al.Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces[J].Pattern Analysis and Machine Intelligence,2003,25(5):623-628.
[14] HSUAN Y M.Kernel eigenfaces vs kernel fisherfaces: Face recognition using kernel methods[C]//Processing of the 5th IEEE International Conference on Automatic Face and Gesture Recognition.Washington D C:IEEE Press,2002:215-220.
[15] BELKIN M,NIYOGI P.Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Processing of Advances in Neural Information Processing Systems.Cambridge:MIT Press,2001:585-591.

备注/Memo

备注/Memo:
收稿日期: 2015-04-17
通信作者: 刘忠宝(1981-),男,副教授,博士后,主要从事机器学习的研究.E-mail:liu_zhongbao@hotmail.com
基金项目: 国家自然科学基金资助项目(61202311); 山西省高等学校科技创新项目(2014142)
更新日期/Last Update: 2015-07-20