[1]黄奕,谢维波.微熵率算法分析及实证研究[J].华侨大学学报(自然科学版),2015,36(2):161-165.[doi:10.11830/ISSN.1000-5013.2015.02.0161]
 HUANG Yi,XIE Wei-bo.Analysis and Empirical Research of the Entropy Ratio Method[J].Journal of Huaqiao University(Natural Science),2015,36(2):161-165.[doi:10.11830/ISSN.1000-5013.2015.02.0161]
点击复制

微熵率算法分析及实证研究()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第36卷
期数:
2015年第2期
页码:
161-165
栏目:
出版日期:
2015-03-20

文章信息/Info

Title:
Analysis and Empirical Research of the Entropy Ratio Method
文章编号:
1000-5013(2015)02-0161-05
作者:
黄奕12 谢维波12
1. 华侨大学 计算机科学与技术学院, 福建 厦门 361021;2. 华侨大学 厦门软件园嵌入式技术开放实验室, 福建 厦门 361008
Author(s):
HUANG Yi12 XIE Wei-bo12
1. College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China; 2. Open Laboratory of Embedded Technology, Xiamen Software Park, Huaqiao University, Xiamen 361021, China
关键词:
微熵率法 替代数据 Henon map 混沌特性 实证研究
Keywords:
differential entropy ratio method surrogate data Henon map chaotic characteristics empirical research
分类号:
TP311
DOI:
10.11830/ISSN.1000-5013.2015.02.0161
文献标志码:
A
摘要:
利用微熵率法进行相空间重构,并以Henon map混沌特性的理论结果为依据,分别选取两组初值以验证Henon序列混沌特征的稳定性,实证研究微熵率算法的各个环节.实验结果表明:利用微熵率法重构相空间能够有效地捕捉混沌序列的特性.
Abstract:
Using differential entropy ratio method to reconstruct phase space and based on the theoretical results of the chaotic characteristic of Henon map, two groups of initial value were selected to verify the stability of the chaotic characteristics of Henon sequence. In this process, all aspects of differential entropy ratio algorithm was demonstrated either. The experimental results showed that using differential entropy ratio method to reconstruct phase space can effectively capture the characteristic of the the chaotic sequences.

参考文献/References:

[1] GAUTAMA T,MANDIC D P,VANHULLE M M.A differential entropy based method for determing the optimal embedding parameters of signal[C]//Processing of the Int Conf on a Coustics, Speech and Signal Processing.Hong Kong:[s.n.],2003:29-32.
[2] 王光义,郑艳,刘敬彪.一个超混沌 Lorenz 吸引子及其电路实现[J].物理学报,2007,56(6):3113-3120.
[3] GALLAS J A C.Structure of the parameter space of the Hénon map[J].Physical Review Letters,1993,70(18):2714.
[4] HENON M.A two dimensional mapping with stranger attractor[J].Commun Math Phys,1976,50(1):69-77.
[5] BENEDICKS M,CARLESON L.The dynamics of the Henon map[J].Annals of Mathematics.1991,163(3):749-841.
[6] THEILER J,EUBANK S,LONGTIN A,et al.Testing for nonlinearity in time series: The method of surrogate data[J].Physica D: Nonlinear Phenomena,1992,58(1):77-94.
[7] SCHREIBER T,SCHMITZ A.Improved surrogate data for nonlinearity tests[J].Physical Review Letters,1996,77(4):635.
[8] KEYLOCK C J.Constrained surrogate time series with preservation of the mean and variance structure[J].Physical Review E,2006,73(3):036707.
[9] 王海燕,盛昭瀚.混沌时间序列相空间重构参数的选取方法[J].东南大学学报:自然科学版,2000,30(5):113-117.
[10] TAKENS F.Detecting strange atractors in turbulence[J].Lecture Notes in Mathematics,1982,898(12):198-366.
[11] GRASSBERGER P,KANTZ H,MOENIG U.On the symbolic dynamics of the Hénon map[J].Journal of Physics A:Mathematical and General,1989,22(24):5217.

备注/Memo

备注/Memo:
收稿日期: 2013-11-26
通信作者: 谢维波(1964-),男,教授,博士,主要从事嵌入式技术的研究.E-mail:xwblxf@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(61271383); 华侨大学高层次人才科研启动项目(11BS120)
更新日期/Last Update: 2015-03-20