[1]李向正,郭向阳.Sawada-Kotera-Ramani方程的两类尖孤立波解[J].华侨大学学报(自然科学版),2014,35(6):717-720.[doi:10.11830/ISSN.1000-5013.2014.06.0717]
 LI Xiang-zheng,GUO Xiang-yang.Two Kinds of Peaked Solitary Wave Solutions of Sawaka-Kotera-Ramani Equation[J].Journal of Huaqiao University(Natural Science),2014,35(6):717-720.[doi:10.11830/ISSN.1000-5013.2014.06.0717]
点击复制

Sawada-Kotera-Ramani方程的两类尖孤立波解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第6期
页码:
717-720
栏目:
出版日期:
2014-11-20

文章信息/Info

Title:
Two Kinds of Peaked Solitary Wave Solutions of Sawaka-Kotera-Ramani Equation
文章编号:
1000-5013(2014)06-0717-04
作者:
李向正1 郭向阳2
1. 河南科技大学 数学与统计学院, 河南 洛阳471023;2. 洛阳理工学院 数理部, 河南 洛阳 471023
Author(s):
LI Xiang-zheng1 GUO Xiang-yang2
1. College of Science and Statistics, Henan University of Science and Technology, Luoyang 471023, China; 2. Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, China
关键词:
Sawada-Kotera-Ramani方程 尖孤波解 Rankine-Hugoniot条件 (G’/G)展开法 弱解
Keywords:
Sawada-Kotera-Ramani equation peaked solitary wave solution Rankine-Hugoniot condition (G’/G)-expansion method weak solution
分类号:
O175.2
DOI:
10.11830/ISSN.1000-5013.2014.06.0717
文献标志码:
A
摘要:
用(G’/G)展开法构造出Sawada-Kotera-Ramani(SKR)方程的两类尖孤波解.这两类孤波解都有尖峰或倒尖峰,且满足Rankine-Hugoniot条件和熵条件,是方程的弱解.
Abstract:
Two kinds of peaked solitary wave solutions of Sawaka-Kotera-Ramani(SKR)equation are given by means of(G’/G)-expansion method. The solutions have either a peakon or an anti-peakon, and satisfy the Rankine-Hugoniot condition and entropy condition, then they are weak solutions of the equation.

参考文献/References:

[1] LIAO Shi-jun.Two kinds of peaked solitary waves of the KdV, BBM and Boussinesq equations[J].Science China,2012,55(12):2469-2475.
[2] 谢永钦,马加磊,肖霞,等.一类非线性发展方程解的长时间行为[J].湘潭大学学报:自然科学版,2012,34(1):1-4.
[3] 廖秋明,赵红星.一类具耗散项的非线性四阶波动方程的整体弱解及其渐近性质[J].工程数学学报,2013,30(1):59-66.
[4] 夏子伦,曹文慧,杨文斌.一类非线性双曲型方程的弱解[J].云南民族大学学报:自然科学版,2013,22(1):48-53.
[5] YU Ya-xuan.Suppermmetric Sawada-Kotera-Ramani equation: Bilinear approach[J].Commun Theor Phys,2008,49(3):685-688.
[6] WAZWAZ A M.Abundant solitons for several forms of the fifth-order KdV equation by using the tanh method[J].Applied Mathematics and Computation,2006,182(1):283-300.
[7] WANG Ming-liang,LI Xiang-zheng,ZHANG Jin-liang.The(G’/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics[J].Physics Letters A,2008,372(4):417-423.
[8] 李向正,张卫国,原三领.(G’/G)展开法的简化及Nagumo方程的有界行波解[J].河南科技大学:自然科学版,2010,31(6):18-81.
[9] WANG Ming-liang.Solitary wave solutions for variant Boussinesq equations[J].Phys Lett A,1995,199(3):169-172.
[10] LI Xiang-zheng,WANG Ming-liang.A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms[J].Phys Lett A,2007,361(1):115-118.
[11] 胡国定.简明数学词典[M].北京:科学出版社,2007:481.

备注/Memo

备注/Memo:
收稿日期: 2014-04-10
通信作者: 郭向阳(1971-),男,讲师,主要从事负热膨胀材料的研究.E-mail:gxyson@126.com.
基金项目: 国家自然科学基金资助项目(10871129); 河南科技大学博士启动基金资助项目(09001562)
更新日期/Last Update: 2014-11-20