[1]刘伟斌,郑力新,周凯汀.一种方向性纹理织物疵点的检测方法[J].华侨大学学报(自然科学版),2014,35(6):642-647.[doi:10.11830/ISSN.1000-5013.2014.06.0642]
 LIU Wei-bin,ZHENG Li-xin,ZHOU Kai-ting.A Detection Method of Directional Texture Fabric Defects[J].Journal of Huaqiao University(Natural Science),2014,35(6):642-647.[doi:10.11830/ISSN.1000-5013.2014.06.0642]
点击复制

一种方向性纹理织物疵点的检测方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第6期
页码:
642-647
栏目:
出版日期:
2014-11-20

文章信息/Info

Title:
A Detection Method of Directional Texture Fabric Defects
文章编号:
1000-5013(2014)06-0642-06
作者:
刘伟斌1 郑力新2 周凯汀1
1. 华侨大学 信息工程与科学学院, 福建 厦门 361021;2. 华侨大学 工学院, 福建 泉州 362021
Author(s):
LIU Wei-bin1 ZHENG Li-xin2 ZHOU Kai-ting1
1. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China; 2. College of Engineering, Huaqiao University, Quanzhou 362021, China
关键词:
织物疵点 Hough变换 Gabor滤波器 最大熵
Keywords:
fabric defects Hough transform Gabor filter maximum entropy
分类号:
TP391
DOI:
10.11830/ISSN.1000-5013.2014.06.0642
文献标志码:
A
摘要:
首先,利用Hough获取织物的纹理主方向及其正交方向,由Gabor滤波器沿着这两个方向分别进行滤波,取模值图像为输出;然后,应用最大熵对两个输出模值图像进行二值化分割,融合这两个分割后的图像并进行形态学处理和去除孤立点;最后,得到疵点图像检测结果.实验选取5种织物疵点进行验证,结果表明:该方法针对不同纹理方向的织物都有良好的检测效果,且滤波器数量少,无需事先学习.
Abstract:
Firstly, using the Hough transform to obtain the main direction and the orthogonal direction of texture, then taking these direction of texture as the direction of Gabor filter, the model image was taken as an output characteristics; and then using maximum entropy to segment these amplitude images, fusing the sub-images and morphology processing, removing the outlier detection; finally, the fabric defect image was achieved. The experiment select five types of fabric defects, the experimental results shows that the method has good detection effect for different texture of fabric, few filters were needed and without prior learning.

参考文献/References:

[1] NGAN H Y T,PANG G K H,YUNG N H C.Automated fabric defect detection: A review[J].Image and Vision Computing,2011,29(7):442-458.
[2] MAK K L,PENG P,YIU K F C.Fabric defect detection using multi-level tuned-matched Gabor filters[J].Journal of Industrial and Management Optimization,2012,8(2):325-341.
[3] RAHEJA J L,KUMAR S,CHAUDHARY A.Fabric defect detection based on GLCM and Gabor filter: A comparison[J].Optik-International Journal for Light and Electron Optics,2013,124(23):6469-6474.
[4] SIVABALAN K N,GNANADURAI D.Efficient defect detection algorithm for gray level digital images using Gabor wavelet filter and Gaussian filter[J].Int J Eng Sci Technol,2011,3(4):3195-3202.
[5] BISSI L,BARUFFA G,PLACIDI P,et al.Automated defect detection in uniform and structured fabrics using Gabor filters and PCA[J].Journal of Visual Communication and Image Representation,2013,24(7):838-845.
[6] HU Luo-yan,LI Ke-jing.Image texture recognition based on median filtering and hough transform[C]//International Conference on Industrial and Information Systems.Haikou:IEEE Press,2009:267-270.
[7] 官声启.方向性纹理织物疵点检测方向研究[J].计算机科学与工程,2011,33(3):73-76.
[8] DAUGMAN J G.High confidence visual recognition of persons by a test of statistical independence[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1148-1161.
[9] 邬向前,张大鹏,王宽全.掌纹识别技术[M].北京:科学出版社,2006:94-103.
[10] KUMAR A,PANG G K H.Defect detection in textured materials using gabor filters[J].IEEE Transaction Industry Applications,2002,38(2):425-440.
[11] 王东云,牛正光.改进的基于局部熵的织物疵点检测方法[C]//第二十七届中国控制会议论文集.北京:北京航空航天出版社,2008:208-211.
[12] WANG Dong-yun,NIU Zheng-guang.Improved method of fabric defects inspection based on local entropy[C]//27th Chinese Control Conference.Beijing:Beijing University of Aeronautics and Astronautics Press,2008:208-211.
[13] LI Peng-feng,ZHANG Huan-huan,JING Jun-feng,et al.Fabric defect detection based on local entropy[J].Advanced Materials Research,2012,562-564:1998-2001.
[14] 陈岩.基于阈值分割的织物疵点检测技术研究与实现[D].北京:北京工业大学,2012:29-31.
[15] 卿湘运,段红,魏俊敏.基于局部熵的织物疵点检测与识别的研究[J].纺织学报,2004,25(5):56-57.
[16] 杨晓波.基于Gabor滤波器的织物疵点检测[J].纺织学报.2010,31(4):55-58.

相似文献/References:

[1]严小红.计算机视觉在条形码缺陷检测中的应用[J].华侨大学学报(自然科学版),2017,38(1):109.[doi:10.11830/ISSN.1000-5013.201701021]
 YAN Xiaohong.Application of Computer Vision in Defect Bar Code Detection[J].Journal of Huaqiao University(Natural Science),2017,38(6):109.[doi:10.11830/ISSN.1000-5013.201701021]

备注/Memo

备注/Memo:
收稿日期: 2014-04-23
通信作者: 郑力新(1967-),男,教授,主要从事工业自动化技术和人工智能的研究.E-mail:1275373176@qq.com.
基金项目: 福建省科技创新平台建设项目(2013H2002)
更新日期/Last Update: 2014-11-20