[1]吴丽娇,王全义.具有脉冲的非线性微分方程边值问题的多个正解[J].华侨大学学报(自然科学版),2014,35(4):466-471.[doi:10.11830/ISSN.1000-5013.2014.04.0466]
 WU Li-jiao,WANG Quan-yi.Multiple Positive Solutions of Boundary Value Problems for Nonlinear Impulsive Differential Equations[J].Journal of Huaqiao University(Natural Science),2014,35(4):466-471.[doi:10.11830/ISSN.1000-5013.2014.04.0466]
点击复制

具有脉冲的非线性微分方程边值问题的多个正解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第4期
页码:
466-471
栏目:
出版日期:
2014-07-10

文章信息/Info

Title:
Multiple Positive Solutions of Boundary Value Problems for Nonlinear Impulsive Differential Equations
文章编号:
1000-5013(2014)04-0466-06
作者:
吴丽娇 王全义
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
WU Li-jiao WANG Quan-yi
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
边值问题 脉冲 多个正解 不动点定理
Keywords:
boundary value problems impulse multiple positive solutions cone fixed point theorem
分类号:
O175.14
DOI:
10.11830/ISSN.1000-5013.2014.04.0466
文献标志码:
A
摘要:
研究一类带有脉冲的一阶非线性微分方程边值问题的多个正解的存在性问题.利用Avery-Henderson不动点定理以及一些分析技巧,得到该脉冲非线性微分方程的边值问题存在多个正解的一些充分条件的新结果.
Abstract:
The problem on the existence of multiple positive solutions of a class of boundary value problems for nonlinear first order impulsive differential equations is considered. By applying Avery-Henderson cone fixed point theorem and some analysis techniques, some new results of sufficient conditions which guarantee the existence of multiple positive solutions of the boundary value problems for the impulsive differential equations are established.

参考文献/References:

[1] NIETO J J.Basic theory for nonresonance impulsive periodic problems of first order[J].Journal of Mathematical Analysis and Applications,1997,205(2):423-433.
[2] ZHAO Ai-min,BAI Zhen-guo.Existence of solutions to first-order impulsive periodic boundary value problems[J].Nonlinear Analysis,2009,71(5/6):1970-1977.
[3] NIETO J J.Periodic boundary value problems for first order impulsive ordinary differential equations[J].Nonlinear Analysis,2002,51(7):1223-1232.
[4] LIU Yang-shen.Periodic boundary value problems for first order functional differential equations with impulsive[J].Journal of Computational and Applied Mathematics,2009,223(1):27-39.
[5] LIU Yu-ji.Positive solutions of periodic boundary value problems for nonlinear first-order impulsive differential equations[J].Nonlinear Analysis,2009,70(5):2106-2122.
[6] LI Jian-li,SHEN Jian-hua.New comparison results for impulsive functional differential equations[J].Applied Mathematics Letters,2010,23(4):487-493.
[7] NIETO J J.Impulsive resonance periodic problems of first order[J].Applied Mathematics Letters,2002,15(4):489-493.
[8] ZHANG Feng-qin,MA Zhi-en,YAN Ju-rang.Periodic boundary value problems for first order impulsive delay di- fferential equations with a parameter[J].Journal of Mathematical Analysis and Applications,2004,290(1):213-223.
[9] LI Jian-li,NIETO J J,SHEN Jian-hua.Impulsive periodic boundary value problems of first-order differential equations[J].Journal of Mathematical Analysis and Applications,2007,325(1):226-236.
[10] 吴丽娇,王全义.具有脉冲的一阶非线性微分方程边值问题的正解[J].华侨大学学报:自然科学版,2012,33(3):342-347.
[11] AVERY R I,HENDERSON J.Two positive fixed points of nonlinear operations on ordered Banach spaces[J].Comm Appl Nonlinear Anal,2001,8(1):27-36.

相似文献/References:

[1]郑灿民,陈金涛.HD83—02智能电话机[J].华侨大学学报(自然科学版),1986,7(1):97.[doi:10.11830/ISSN.1000-5013.1986.01.0097]
 Zheng Canmin,Chen Jintao.HD83—02 Intelligent Telephone[J].Journal of Huaqiao University(Natural Science),1986,7(4):97.[doi:10.11830/ISSN.1000-5013.1986.01.0097]
[2]潘金火.一种步进电动机恒流驱动电路[J].华侨大学学报(自然科学版),1988,9(4):447.[doi:10.11830/ISSN.1000-5013.1988.04.0447]
 Pan Jinhuo.A Circuit for Driving the Stepmotor with Constant Current[J].Journal of Huaqiao University(Natural Science),1988,9(4):447.[doi:10.11830/ISSN.1000-5013.1988.04.0447]
[3]林建华.方块脉冲函数在一般型泛函变分近似解法中的应用[J].华侨大学学报(自然科学版),1990,11(1):52.[doi:10.11830/ISSN.1000-5013.1990.01.0052]
 Lin Jianhua.The Application of Block-Pulse Functions in Approximate Solution of Variations with General Types of Functional[J].Journal of Huaqiao University(Natural Science),1990,11(4):52.[doi:10.11830/ISSN.1000-5013.1990.01.0052]
[4]汪东树,王全义.脉冲时滞Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2010,31(5):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(4):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
[5]刘燕,王全义.具有脉冲和时滞合作系统的正周期解存在性[J].华侨大学学报(自然科学版),2010,31(6):697.[doi:10.11830/ISSN.1000-5013.2010.06.0697]
 LIU Yan,WANG Quan-yi.Existence of Positive Periodic Solutions for a Class of Mutualism Systems with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(4):697.[doi:10.11830/ISSN.1000-5013.2010.06.0697]
[6]汪东树,王全义.一类具多时滞和脉冲Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2011,32(5):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Several Delays[J].Journal of Huaqiao University(Natural Science),2011,32(4):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
[7]姚村,林峰.二阶矩随机Hilbert边值问题[J].华侨大学学报(自然科学版),2011,32(6):714.[doi:10.11830/ISSN.1000-5013.2011.06.0714]
 YAO Cun,LIN Feng.Random Hilbert Boundary Value Problem with Second Order Moment[J].Journal of Huaqiao University(Natural Science),2011,32(4):714.[doi:10.11830/ISSN.1000-5013.2011.06.0714]
[8]陈应生,汪东树.脉冲时滞Lotka-Volterra食物链系统的正周期解[J].华侨大学学报(自然科学版),2012,33(2):218.[doi:10.11830/ISSN.1000-5013.2012.02.0218]
 CHEN Ying-sheng,WANG Dong-shu.Positive Periodic Solutions of a Lotka-Volterra Food-Chain System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2012,33(4):218.[doi:10.11830/ISSN.1000-5013.2012.02.0218]
[9]汪东树,王全义.具时滞和脉冲的植化相克系统周期正解[J].华侨大学学报(自然科学版),2012,33(4):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of Two-Specics Impulsive Systems with Time Delays in Plankton Allelopathy[J].Journal of Huaqiao University(Natural Science),2012,33(4):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
[10]陈应生,汪东树.一阶非线性脉冲微分方程两点边值问题的正解[J].华侨大学学报(自然科学版),2013,34(1):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
 CHEN Ying-sheng,WANG Dong-shu.Positive Solutions of Impulsive Boundary Value Problems for First-Order Two-Point Nonlinear Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(4):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
[11]吴丽娇,王全义.具有脉冲的一阶非线性微分方程边值问题的正解[J].华侨大学学报(自然科学版),2012,33(3):342.[doi:10.11830/ISSN.1000-5013.2012.03.0342]
 WU Li-jiao,WANG Quan-yi.Positive Solutions of Boundary Value Problems for Nonlinear First Order Impulsive Differential Equations[J].Journal of Huaqiao University(Natural Science),2012,33(4):342.[doi:10.11830/ISSN.1000-5013.2012.03.0342]
[12]吴丽娇,王全义.具有脉冲的非线性微分方程边值问题的多个正解[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 WU Li-jiao,WANG Quan-yi.Multiple Positive Solutions of Boundary Value Problems for Nonlinear Impulsive Differential Equations[J].Journal of Huaqiao University(Natural Science),2015,36(4):0.

备注/Memo

备注/Memo:
收稿日期: 2013-07-01
通信作者: 王全义(1955-),男,教授,主要从事常微分方程和泛函微分方程的研究.E-mail:wqy19555@163.com.
基金项目: 国家自然科学基金数学天元基金资助项目(11226145)
更新日期/Last Update: 2014-07-20