[1]陈红梅,林峰.Hilbert边值逆问题关于边界曲线的稳定性[J].华侨大学学报(自然科学版),2014,35(3):349-353.[doi:10.11830/ISSN.1000-5013.2014.03.0349]
 CHEN Hong-mei,LIN Feng.On Stability of Inverse Hilbert Boundary Value Problem with Respect to Path of Boundary[J].Journal of Huaqiao University(Natural Science),2014,35(3):349-353.[doi:10.11830/ISSN.1000-5013.2014.03.0349]
点击复制

Hilbert边值逆问题关于边界曲线的稳定性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第3期
页码:
349-353
栏目:
出版日期:
2014-05-16

文章信息/Info

Title:
On Stability of Inverse Hilbert Boundary Value Problem with Respect to Path of Boundary
文章编号:
1000-5013(2014)03-0349-05
作者:
陈红梅 林峰
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
CHEN Hong-mei LIN Feng
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Hilbert边值逆问题 扰动 稳定性 共形变换
Keywords:
inverse Hilbert boundary value problem perturbation stability conformal transformation
分类号:
O175.8
DOI:
10.11830/ISSN.1000-5013.2014.03.0349
文献标志码:
A
摘要:
当边界曲线发生微小的光滑扰动时,给出指标大于等于零时Hilbert边值逆问题解的状况.借助共形变换理论给出其中解的表达式,并讨论Hilbert边值逆问题解的稳定性,以及给出相应的误差估计.
Abstract:
Using the knowledge of conformal mapping theorem, we discuss the solvability of inverse Hilbert boundary value problem under the small perturbation of boundary curve. When the index of this problem is non-negative, the representations of the solutions are obtained. We also show the solutions are stable, and give the corresponding error estimates.

参考文献/References:

[1] 章红梅,王传荣.Riemann边值问题关于边界曲线的稳定性[J].福州大学学报:自然科学版,2001,29(1):1-4.
[2] ZHANG Hong-mei,WANG Chuan-rong,ZHU Yuan-can.Stability of Hilbert boundary value problem under perturbation of the boundary curve [J].J Math Anal Appl,2003,284(2):601-617.
[3] LIN Juan,WANG Chuan-rong.Riemann boundary value problem with respect to the perturbation of boundary curve to be an open arc[J].Acta Math Sci,2009,29B(5):1481-1488.
[4] 林峰.Beurling-Ahlfors扩张伸张函数在非光滑摄动下的稳定性[J].华侨大学学报:自然科学版,2011,32(2):222-225.
[5] IOAKIMIDS N I,PERDIOS E A,PAPADAKIS K E.Numerical estimation of the coefficient of the homogeneous Riemann-Hilbert problem on the basis of boundary data[J].Applied Mathematics and Computation,1991,41(1):21-33.
[6] LI Xing.The inverse riemann boundary value jump problem[C]//Proceeding of the International Conference on Computation Engineering Science.Atlanta:Technology Publications,1992:19-28.
[7] LI Xing.A class of inverse Riemann boundary value problems[J].J Math,1996,16(3):303-306.
[8] 王明华.一类Riemann-Hilbert边值逆问题[J].纯粹数学与应用数学,2006,12(22):532-537.
[9] WANG Chuan-rong,ZHANG Hong-mei,ZHU Yuan-can.The riemann boundary value problem with respect to the perturbation of boundary curve [J].Complex Variables and Elliptic Equations,2006,51(8):631-845.
[10] 王小林,龚亚方.一类奇异积分和Cauchy型积分关于积分曲线的稳定性[J].数学学报,1999,42(2):343-350.

相似文献/References:

[1]施敏芳.转子系统振动的条件监测[J].华侨大学学报(自然科学版),1991,12(1):43.[doi:10.11830/ISSN.1000-5013.1991.01.0043]
 Shi Minfang,Department of,Precision Mechanical,et al.Vibration Test of a Rotor System under Monitored Condition[J].Journal of Huaqiao University(Natural Science),1991,12(3):43.[doi:10.11830/ISSN.1000-5013.1991.01.0043]

备注/Memo

备注/Memo:
收稿日期: 2013-03-19
通信作者: 林峰(1962-),男,副教授,主要从事函数论的研究.E-mail:lfeng@hqu.edu.cn.
更新日期/Last Update: 2014-05-20