[1]黄雪冰,施慧华.向量测度的算子分解[J].华侨大学学报(自然科学版),2014,35(2):238-240.[doi:10.11830/ISSN.1000-5013.2014.02.0238]
 HUANG Xue-bing,SHI Hui-hua.Operator Decomposition of Vector Measures[J].Journal of Huaqiao University(Natural Science),2014,35(2):238-240.[doi:10.11830/ISSN.1000-5013.2014.02.0238]
点击复制

向量测度的算子分解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第2期
页码:
238-240
栏目:
出版日期:
2014-03-20

文章信息/Info

Title:
Operator Decomposition of Vector Measures
文章编号:
1000-5013(2014)02-0238-03
作者:
黄雪冰 施慧华
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
HUANG Xue-bing SHI Hui-hua
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
w*-范序列 连续算子 纯连续算子 向量测度 Yosida-Hewitt定理
Keywords:
w*-norm sequentially continuous continuous operator purely continuous operator vector measures Yosida-Hewitt theorem
分类号:
O177.2
DOI:
10.11830/ISSN.1000-5013.2014.02.0238
文献标志码:
A
摘要:
利用向量测度与算子的一一对应关系,给出可列可加测度的算子表示,并进一步由推广的Yosida-Hewitt定理证明定义在B(Ω,Σ)=span^-{χA,A∈Σ}上的取值于自反空间X的算子,可唯一分解成w*-范序列连续算子与纯连续算子之和.
Abstract:
Using the isometrim between vector measures and operators, we give the operator representation for countably additive measures, then by applying extended Yosida-Hewitt theorem we show that a operator, which defined on B(Ω,Σ)=span^-{χA,A∈Σ} and valued in the reflexive Banach space, X can be uniquely decomposed into the sum of a w*-norm sequentially continuous operator and a purely continuous operator.

参考文献/References:

[1] RUDIN W.Functional analysis[M].New York:Mc Graw-Hill Higher Education,1991:117-120.
[2] DINCULEANU N.Linear operations on spaces of totally measurable functions[J].Rev Roumsine Math Pures Appl,1965(10):1493-1524.
[3] GROTHENDIECK A.Sur les applications linéaires faiblement compactes D’espaces du type C(K)[J].Canada J Math,1953(5):129-173.
[4] BARTLE R G,DUNFORD N,SCHWARTZ J.Weak compactness and vector measures[J].Canada J Math,1955(7):289-305.
[5] DIESTEL J,UHL J J J.Vector measures[M].Rhode Island:American Mathematical Soliety,1977:59-186.
[6] DAY M M.Normed linear spaces[M].New York:Springer-Verlag,1973:195-197.
[7] YOSIDA K,HEWITT E.Finitely additive measures[J].Trans Amer Math Soc,1952,72(1):46-66.
[8] DUNFORD N,SCHWARTZ J T.Linear operators part I[M].New York:John-Wiley and Sons,1958:318-319.
[9] CHENG Li-xing,SHI Hui-hua.A functional characterization of measures and the Banach-Ulam problem[J].J Math Anal Appl,2011,374(2):558-565.

备注/Memo

备注/Memo:
收稿日期: 2013-01-19
通信作者: 施慧华(1981-),女,讲师,主要从事基础数学泛函分析的研究.E-mail:shh817@hqu.edu.cn.
基金项目: 国家自然科学基金专项数学天元基金资助项目(11226129); 华侨大学高层次人才科研启动项目(10BS215)
更新日期/Last Update: 2014-03-20