[1]任全伟,庄清渠.一类四阶微积分方程的紧差分格式[J].华侨大学学报(自然科学版),2014,35(2):232-237.[doi:10.11830/ISSN.1000-5013.2014.02.0232]
 REN Quan-wei,ZHUANG Qing-qu.Compact Difference for a Class of Fourth-Order Integro-Differential Equations[J].Journal of Huaqiao University(Natural Science),2014,35(2):232-237.[doi:10.11830/ISSN.1000-5013.2014.02.0232]
点击复制

一类四阶微积分方程的紧差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第2期
页码:
232-237
栏目:
出版日期:
2014-03-20

文章信息/Info

Title:
Compact Difference for a Class of Fourth-Order Integro-Differential Equations
文章编号:
1000-5013(2014)02-0232-06
作者:
任全伟 庄清渠
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
REN Quan-wei ZHUANG Qing-qu
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
四阶微积分方程 紧差分格式 迭代算法 收敛性 稳定性
Keywords:
fourth-order integro-differential equation compact difference scheme iterative algorithm convergence stability
分类号:
O241.8
DOI:
10.11830/ISSN.1000-5013.2014.02.0232
文献标志码:
A
摘要:
针对由铰链梁横向振动模型而建立的四阶微积分方程,提出紧差分格式进行求解,利用Newton型迭代法处理积分项,给出差分格式解的存在性、收敛性和稳定性的证明.数值结果表明:格式的精度为O(h4).
Abstract:
A compact difference scheme is proposed to solve the fourth-order integro-differential equation arising from the transverse vibrations of the hinge model. Newton type iteration methods are presented to deal with the integral term. The existence, convergence and stability of the scheme are also proved. Numerical results show that the accuracy order of the scheme is of O(h4).

参考文献/References:

[1] FEIREISL E.Exponential attractors for non-autonomous systems: Long-time behaviour of vibrating beams[J].Mathematical Methods in the Applied Sciences,1992,15(4):287-297.
[2] SHIN J Y.Finite-element approximation of a fourth-order differential equation[J].Computers and Mathematics with Applications,1998,35(8):95-100.
[3] OHM M R,LEE H Y,SHIN J Y.Error estimates of finite-element approximations for a fourth-order differential equation[J].Computers and Mathematics with Applications,2006,52(3/4):283-288.
[4] DANG Q A,LUAN V T.Iterative method for solving a nonlinear fourth order boundary value problem[J].Computers and Mathematics with Applications,2010,60(1):112-121.
[5] SEMPER B.Finite element methods for suspension bridge models[J].Computers and Mathematics with Applications,1993,26(5):77-91.
[6] 庄清渠,任全伟.一类四阶微积分方程的差分迭代解法[J].华侨大学学报:自然科学版,2012,33(6):709-714.
[7] 孙志忠.偏微分方程数值解法[M].北京:科学出版社,2012:13-15.
[8] SHIDAMA Y.The Taylor expansions[J].Formalized Mathematics,2004,12(2):195-200.
[9] SHERMAN A H.On Newton-iterative methods for the solution of systems of nonlinear equations[J].SIAM Journal on Numerical Analysis,1978,15(4):755-771.
[10] DAVIS P J,RABINOWITZ P.Methods of numerical integration[M].New York: Dover Publications,2007:57-60.
[11] GAUTSCHI W.Numerical analysis[M].Berlin: Birkhauser Boston,2011:168-178.

相似文献/References:

[1]庄清渠,任全伟.一类四阶微积分方程的差分迭代解法[J].华侨大学学报(自然科学版),2012,33(6):709.[doi:10.11830/ISSN.1000-5013.2012.06.0709]
 ZHUANG Qing-qu,REN Quan-wei.Finite Difference Approximation of a Class of Fourth-Order Integro-Differential Equations[J].Journal of Huaqiao University(Natural Science),2012,33(2):709.[doi:10.11830/ISSN.1000-5013.2012.06.0709]
[2]林周瑾,汪佳玲,霍昱安.Klein-Gordon-Schr?dinger方程的几种差分格式及比较[J].华侨大学学报(自然科学版),2024,45(1):108.[doi:10.11830/ISSN.1000-5013.202306029]
 LIN Zhoujin,WANG Jialing,HUO Yuan.Several Difference Schemes and Comparisons for Klein-Gordon-Schr?dinger Equation[J].Journal of Huaqiao University(Natural Science),2024,45(2):108.[doi:10.11830/ISSN.1000-5013.202306029]

备注/Memo

备注/Memo:
收稿日期: 2012-12-03
通信作者: 庄清渠(1980-),男,讲师,主要从事微分方程数值解的研究.E-mail:qqzhuang@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11126330); 福建省自然科学基金资助项目(2011J05005)
更新日期/Last Update: 2014-03-20