参考文献/References:
[1] FEIREISL E.Exponential attractors for non-autonomous systems: Long-time behaviour of vibrating beams[J].Mathematical Methods in the Applied Sciences,1992,15(4):287-297.
[2] SHIN J Y.Finite-element approximation of a fourth-order differential equation[J].Computers and Mathematics with Applications,1998,35(8):95-100.
[3] OHM M R,LEE H Y,SHIN J Y.Error estimates of finite-element approximations for a fourth-order differential equation[J].Computers and Mathematics with Applications,2006,52(3/4):283-288.
[4] DANG Q A,LUAN V T.Iterative method for solving a nonlinear fourth order boundary value problem[J].Computers and Mathematics with Applications,2010,60(1):112-121.
[5] SEMPER B.Finite element methods for suspension bridge models[J].Computers and Mathematics with Applications,1993,26(5):77-91.
[6] 庄清渠,任全伟.一类四阶微积分方程的差分迭代解法[J].华侨大学学报:自然科学版,2012,33(6):709-714.
[7] 孙志忠.偏微分方程数值解法[M].北京:科学出版社,2012:13-15.
[8] SHIDAMA Y.The Taylor expansions[J].Formalized Mathematics,2004,12(2):195-200.
[9] SHERMAN A H.On Newton-iterative methods for the solution of systems of nonlinear equations[J].SIAM Journal on Numerical Analysis,1978,15(4):755-771.
[10] DAVIS P J,RABINOWITZ P.Methods of numerical integration[M].New York: Dover Publications,2007:57-60.
[11] GAUTSCHI W.Numerical analysis[M].Berlin: Birkhauser Boston,2011:168-178.
相似文献/References:
[1]庄清渠,任全伟.一类四阶微积分方程的差分迭代解法[J].华侨大学学报(自然科学版),2012,33(6):709.[doi:10.11830/ISSN.1000-5013.2012.06.0709]
ZHUANG Qing-qu,REN Quan-wei.Finite Difference Approximation of a Class of Fourth-Order Integro-Differential Equations[J].Journal of Huaqiao University(Natural Science),2012,33(2):709.[doi:10.11830/ISSN.1000-5013.2012.06.0709]
[2]林周瑾,汪佳玲,霍昱安.Klein-Gordon-Schr?dinger方程的几种差分格式及比较[J].华侨大学学报(自然科学版),2024,45(1):108.[doi:10.11830/ISSN.1000-5013.202306029]
LIN Zhoujin,WANG Jialing,HUO Yuan.Several Difference Schemes and Comparisons for Klein-Gordon-Schr?dinger Equation[J].Journal of Huaqiao University(Natural Science),2024,45(2):108.[doi:10.11830/ISSN.1000-5013.202306029]