[1]汪秋分,宋海洲.图的拉普拉斯谱半径对应的特征向量性质及其应用[J].华侨大学学报(自然科学版),2014,35(1):107-111.[doi:10.11830/ISSN.1000-5013.2014.01.0107]
 WANG Qiu-fen,SONG Hai-zhou.Properties and Applications of the Eigenvector Corresponding to the Laplacian Spectral Radius of a Graph[J].Journal of Huaqiao University(Natural Science),2014,35(1):107-111.[doi:10.11830/ISSN.1000-5013.2014.01.0107]
点击复制

图的拉普拉斯谱半径对应的特征向量性质及其应用()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第1期
页码:
107-111
栏目:
出版日期:
2014-01-20

文章信息/Info

Title:
Properties and Applications of the Eigenvector Corresponding to the Laplacian Spectral Radius of a Graph
文章编号:
1000-5013(2014)01-0107-05
作者:
汪秋分 宋海洲
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
WANG Qiu-fen SONG Hai-zhou
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
连通图 拉普拉斯谱半径 移接变形 特征向量
Keywords:
connected graph tree Laplacian spectral radius graft transformation eigenvector
分类号:
O157.5
DOI:
10.11830/ISSN.1000-5013.2014.01.0107
文献标志码:
A
摘要:
研究图的拉普拉斯谱半径对应的特征向量的性质及应用,并得到一些有关图的移接变形对拉普拉斯谱半径影响的结果.
Abstract:
In this paper, we study the properties and applications of the eigenvector corresponding to the Laplacian spectral radius of a graph. Some results on the Laplacian spectral radius of a graph by adding and grafting edges are obtained.

参考文献/References:

[1] 汪秋分,宋海洲.图谱理论中一些定理的新证明[J].华侨大学学报:自然科学版,2012,33(4):477-480.
[2] 刘亚国.图论中邻接矩阵的应用[J].忻州师范学院学报,2008,24(4):18-19.
[3] 谭尚旺,张德龙.一定条件下图的拉普拉斯矩阵的谱半径[J].广西科学,2008,15(4):352-356.
[4] LI Jian-xi,SHIU Wai-chee,CHAN Wai-hong.The Laplacian spectral radius of some graphs[J].Linear Algebra Appl,2009,431(1):99-103.
[5] WU Bao-feng,XIAO En-li,HONG Yuan.The spectral radius of trees on k pendant vertices[J].Linear Algebra Appl,2005,395(15):343-349.
[6] GUO Ji-ming.The effect on the Laplacian spectral radius of a graph by adding or grafting edges[J].Linear Algebra Appl,2006,413(1):59-71.
[7] 袁西英,吴宝丰,肖恩利.树的运算及其Laplace谱[J].华东师范大学学报:自然科学版,2004,50(2):13-18.
[8] GUO Ji-ming.On the Laplacian spectral radius of a tree[J].Linear Algebra Appl,2003,368(15):379-385.
[9] TAN Shang-wang.On the Laplacian spectral radius of trees[J].Chinese Quarterly Journal of Mathematics,2010,25(4):615-625.
[10] ZHANG Xiao-dong.The Laplacian spectral radii of trees with degree sequences[J].Discrete Mathematics,2008,308(15):3143-3150.

备注/Memo

备注/Memo:
收稿日期: 2012-10-17
通信作者: 宋海洲(1971-),男,副教授,主要从事运筹优化的研究.E-mail:hzsong@hqu.edu.cn.
基金项目: 中央高校基本科研业务费资助项目,华侨大学侨办科研基金项目(10HZR26)
更新日期/Last Update: 2014-01-20