文章编号:1000-5013(2014)01-0107-05

doi:10.11830/ISSN.1000-5013.2014.01.0107

图的拉普拉斯谱半径对应的 特征向量性质及其应用

汪秋分, 宋海洲

(华侨大学 数学科学学院,福建 泉州 362021)

摘要: 研究图的拉普拉斯谱半径对应的特征向量的性质及应用,并得到一些有关图的移接变形对拉普拉斯 谱半径影响的结果.

关键词: 连通图;树;拉普拉斯谱半径;移接变形;特征向量

中图分类号: 0 157.5

文献标志码: A

设 G 是一个简单的连通图^[1],G=(V,E), 其顶点集 $V=\{v_1,v_2,\cdots,v_n\}$, 边集 $E=\{e_1,e_2,\cdots,e_m\}$. 记 顶点 v_i 的度为 d_i , $i=1,2,\cdots,n$. 记 $\mathbf{D}(G)=\mathrm{diag}\{d_1,d_2,\cdots,d_n\}$ 和 $\mathbf{A}(G)$ 分别为 G 的度对角矩阵和邻接 矩阵[2],则L(G) = D(G) - A(G)为G的拉普拉斯矩阵[3].显然,L(G)是半正定、对称和奇异的.称L(G)的特征值为 G 的拉普拉斯特征值,记为 $\mu(G) = \mu_1(G) \geqslant \mu_2(G) \geqslant \cdots \geqslant \mu_n(G) = 0$.特别的,称 $\mu(G)$ 为 G 的 拉普拉斯谱半径[4]. 树是含n个顶点,n-1条边的简单连通图. 图 G 中所有的度为 1 的顶点称为图 G 的 悬挂点[$^{[5]}$]. 记 $N_G(v)$ 表示图 G 中与v 相邻接的顶点集, d_v 表示图 G 中顶点v 的度. 有关图的拉普拉斯谱 半径的结果有很多,如郭继明[6]的加边或嫁接边对图的拉普拉斯谱半径的影响,袁西英等[7]的树的运算 及其 Laplace 谱,郭继明^[8]的树的拉普拉斯谱半径,谭尚旺^[9]的关于树的拉普拉斯谱半径,张晓东^[10]的 给定度序列的树的拉普拉斯谱半径,等等.本文给出了图的拉普拉斯谱半径对应的特征向量的性质及应 用,并得到了一些有关图的移接变形对拉普拉斯谱半径影响的结果.

相关定义与性质 1

1.1 图的拉普拉斯谱半径对应的特征向量的定义

介绍其定义之前,先证明一个定理.

定理 1 设 G=(V,E) 是一个简单的连通图,且|V|=n. 记 L(G) 为图 G 的拉普拉斯矩阵,有时也简 记为 $L, \mu(G)$ 为图 G 的拉普拉斯谱半径. 则对于向量 $x \in \mathbb{R}^{n \times 1}$,有

- 1) $\mu(G) = \max\{\mu_i\}, \mu_1, \mu_2, \dots, \mu_n 为 L(G)$ 的 n 个特征值;
- 2) $\mu(G) = \max_{\|x\|=1} (\mathbf{x}' \mathbf{L} x);$
- 3) 若 $\| \mathbf{x} \| = 1$,且 $\mathbf{x}' \mathbf{L}(G) \mathbf{x} = \mu(G)$,则 $\mathbf{L}(G) \mathbf{x} = \mu(G) \mathbf{x}$.

证明 1) 由拉普拉斯谱半径的定义容易证明.

2) 由于L(G)是一个实对称矩阵,因此,存在一个正交矩阵P,使得 $P^{-1}LP$ = diag $(\mu_1,\mu_2,\dots,\mu_n)$,其 中, μ_1 , μ_2 ,…, μ_n 为L(G)的n 个实特征值.

 \diamondsuit diag $(\mu_1, \mu_2, \dots, \mu_n) = \mathbf{D}, \mathbf{P} = (P_1, P_2, \dots, P_n), \mathbf{x} = \mathbf{P}_{\mathcal{Y}},$ 则有

$$x'\mathbf{L}x = y'\mathbf{P}'\mathbf{L}\mathbf{P}y = y'\mathbf{P}^{-1}\mathbf{L}\mathbf{P}y = y'\mathbf{D}y = \sum_{i=1}^{n} \mu_i y_i^2.$$

收稿日期: 2012-10-17

宋海洲(1971-),男,副教授,主要从事运筹优化的研究. E-mail; hzsong@hqu. edu. cn. 通信作者:

基金项目: 中央高校基本科研业务费资助项目,华侨大学侨办科研基金项目(10HZR26) 又由于 P 是正交矩阵,并且有 $x=P_y$. 因此,当 ||x||=1 时,有 ||y||=1. 不失一般性,可假设 $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$. 因而有

$$\max_{\|x\|=1} (x' \mathbf{L} x) = \max_{\|y\|=1} \sum_{i=1}^{n} \mu_{i} y_{i}^{2} \leqslant \max_{\|y\|=1} \sum_{i=1}^{n} \mu_{n} y_{i}^{2} =$$

$$\mu_{n} \max_{\|y\|=1} \sum_{i=1}^{n} y_{i}^{2} = \mu_{n} = \mu(G).$$

令 $\mathbf{y}^* = \mathbf{e}_n = (0,0,\cdots,0,1)'_{n\times 1}$, 记 $\mathbf{x}^* = \mathbf{P}_y^* = \mathbf{P}_n$,则上面不等式等号成立. 因此有 $\mu(G) = \max_{\|\mathbf{x}\| = 1} (\mathbf{x}' \mathbf{L}\mathbf{x})$.

3) 设 $\mu_1, \mu_2, \dots, \mu_n$ 为 L(G) 的 n 个特征值,P, D, y 的含义同 2). 不失一般性,可设 $\mu_1 \leq \mu_2 \leq \dots \leq \mu_n$. 则由 1) 可知 $\mu(G) = \mu_n$. 又由于 $x' L(G) x = \mu(G)$,因此 $x' L(G) x = y' D y = \mu(G) = \mu_n$. 即有 $y' D y = \mu_n$.

易知 L(G)是一个实对称半正定矩阵,且 $\mu_1=0$, $\mu_n>0$. 不妨假设实数 $s(1\leqslant s\leqslant n)$ 是满足 $\mu_s<\mu_{s+1}$ 且 $\mu_{s+1}=\mu_n$ 的最大自然数. 所以 $y=(\mathbf{0}_{1\times s},\mathbf{Z})_{1\times n}$,其中,实向量 $\mathbf{Z}\in\mathbf{R}^{1\times (n-s)}$ 且 $\|\mathbf{Z}\|=1$. 记 $\mathbf{Z}=(y_{s+1},y_{s+2},\mathbf{Z})$

 \dots, y_n),则有 $\mathbf{x} = \mathbf{P} \mathbf{y} = \sum_{k=s+1}^n y_k \mathbf{P}_k$. 可知 $\mathbf{x} \neq \mathbf{L}(G)$ 的对应于 μ_n 的特征向量,因此有 $\mathbf{L}(G) \mathbf{x} = \mu(G) \mathbf{x}$.

下面给出图的拉普拉斯谱半径对应的特征向量的定义.

定义 1 设 G=(V,E)是一个简单的连通图. 若向量 $x \in \mathbf{R}^{n\times 1}$ 满足 $\|x\| = 1$,且 $x'L(G)x = \mu(G)$,则称 x 为图 G 的一个规范拉普拉斯谱向量.

1.2 图的拉普拉斯谱半径对应的特征向量的性质

下面给出有关图的拉普拉斯谱半径对应的特征向量的一些性质.

定理 2 设 T 是一棵树,其顶点集 $V = \{v_1, v_2, \dots, v_n\}$. 记 L(T)为 T 的拉普拉斯矩阵, $\mu(T)$ 为 T 的 拉普拉斯谱半径. 若 x 为 T 的一个规范拉普拉斯谱向量,且 $x = (x_1, x_2, \dots, x_n)'$. 则有:1) x 为实向量; 2) |x| > 0,其中, $|x| = (|x_1|, |x_2|, \dots, |x_n|)'$.

证明 1) 由题意可知: L(T)是实对称矩阵. 又 $\mu(T)$ 也为实数,因此,x 为实向量.

2) 反证法. 假设 $|\mathbf{x}|$ > 0 不成立,必然存在一个顶点集 $H = \{v_{j_1}, v_{j_2}, \dots, v_{j_t}\}$,使 $x_{j_t} = 0$ ($l = 1, 2, \dots$, t),其中, $1 \le t \le n$, $1 \le j \le n$, x_i 为顶点 v_i 对应于一个规范拉普拉斯谱向量的分量.

又由于 x 为 T 的一个规范拉普拉斯谱向量,因而有 $\|x\|=1$. 所以 $x\neq 0$,且存在顶点 $v\in V(T)$ 使 得 $x_v=0$,及顶点 $u\in N_T(v)$ 使得 $x_u\neq 0$.

设 T 是以顶点 v 为根节点的根树,记 $N_T(v) = \{w_1, w_2, \cdots, w_s\}$. 另记 T_i 为由 w_i 及 w_i 的所有子孙 组成的子树, $i=1,2,\cdots,s$. 令 $y_v = x_v = 0$, $y_{w_i} = |x_{w_i}|$,当 $x_{w_i} \ge 0$ 时,有 $y_j = x_j$ ($v_j \in T_i$),当 $x_{w_i} < 0$ 时,有 $y_i = -x_i$ ($v_i \in T_i$), $i=1,2,\cdots,s$.

因此,有 $y_{w_i} \ge 0$, $i=1,2,\cdots,s$, $\|y\|=1$ 且 $y'L(T)y=x'L(T)x=\mu(T)$. 由定义 1 可知, y 是 T 的一个规范拉普拉斯谱向量. 根据定理 1 可得 $L(T)y=\mu(T)y$. 又已知 L(T)=D(T)-A(T), 则(D(T)-D(T))

A(T)) $y = \mu(T) y$. 故 $((D(T) - \mu(T)I) y)_v = (A(T) y)_v$. 因此可得 $\sum_{i=1}^s y_{w_i} = 0$.

然而 $y_{w_i} \ge 0$,且存在 $i_0 = \in \{1, 2, \dots, s\}$,使得 $w_{i_0} = u$ 满足 $y_u \ge 0$. 因而 $\sum_{i=1}^s y_{w_i} > 0$,从而导致矛盾,原命题成立.

定理 3 设 T 是一棵树,v 是 T 的一个顶点, v_1 , v_2 ,…, v_s 是与 v 相邻的悬挂点. 若 $\mathbf{x} = (x_1, x_2, \dots, x_n)'$ 为 T 的一个规范拉普拉斯谱向量,这里 x_i 对应于顶点 v_i , $1 \leq i \leq n$,则 $x_{v_i} = x_{v_i}$, $1 \leq i \leq j \leq s$.

证明 由于 $\mathbf{x} = (x_1, x_2, \dots, x_n)'$ 为 T 的一个规范拉普拉斯谱向量,由定理 1 及定义 1 可得

$$L(T)x = \mu(T)x$$
.

又已知 L(T) = D(T) - A(T),则有 $(D(T) - A(T))\mathbf{x} = \mu(T)\mathbf{x}$,所以可得 $((D(T) - \mu(T)I)\mathbf{x})_{v_i} = (A(T)\mathbf{x})_{v_i} = x_v$, $i = 1, 2, \cdots$,s. 从而有 $(1 - \mu(T))x_{v_1} = x_v$, $(1 - \mu(T))x_{v_2} = x_v$, \cdots , $(1 - \mu(T))x_{v_s} = x_v$. 因此 $x_{v_i} = x_{v_i}$ (1 $\leq i < j \leq s$).

定理 4 设 T = (V, E) 是一棵树,其顶点集 $V(T) = \{v_1, v_2, \dots, v_n\}$,边集记为 E(T). 若 $\mathbf{x} = (x_1, x_2, \dots, x_n)$

 \dots, x_n)'为 T 的一个规范拉普拉斯谱向量, x_i 对应于顶点 v_i ,1 $\leq i \leq n$. 则有:1) 对于任意边 $uv \in E(T)$,有 $x_u x_v < 0$;2) $\sum_{i=1}^{n} x_i = 0$.

证明 1) 由于x为T的一个规范拉普拉斯谱向量,由定义1可得

$$\mu(T) = x' \mathbf{L}(T) x = \sum_{i,j \in F(T)} (x_i - y_j)^2, \qquad 1 \leqslant i < j \leqslant n.$$

对任意 $uv \in E(T)$,由定理 2 可得 $|x_u| > 0$ 且 $|x_v| > 0$,所以有 $x_u x_v \neq 0$.

设存在边 $uv \in E(T)$ 使得 $x_u x_v > 0$. 设 T 是以 r 为根节点的根树,可设顶点 u 是顶点 v 的父节点(图 1). 设 $T_1 = (V_1, E_1)$ 是由 v 及 v 的所有子孙组成的 k 层子树(图 2). 不失一般性,假设 $x_u > 0$, 故 $x_v > 0$.

取 $\mathbf{y} = (y_1, y_2, \dots, y_n)'$,令 $y_i = x_i (i \notin V_1)$, $y_{w_1} = -|x_{w_1}|(w_1 \, \text{是 } T_1 \text{ 的第 1 } \text{层上的顶点}, \text{即 } w_1 = v)$, $y_{w_2} = (-1)^2 |x_{w_2}| (任意 w_2 \, \text{是 } T_1 \text{ 的第 2 } \text{层上的顶点})$, \dots , $y_{w_k} = (-1)^k |x_{w_k}| (任意 w_k \, \text{是 } T_1 \text{ 的第 } k \, \text{层 L的顶点})$. 则有 $\|y\| = \|x\| = 1$, 且有

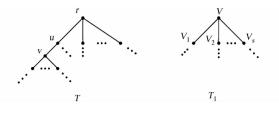


图 1 顶点 u 是顶点 v 的父节点 Fig. 1 Vertex u is

Fig. 1 Vertex u is the father vertex of vertex v

图 2 v 及 v 的所有子孙 组成的 k 层子树

Fig. 2 Subtree with k levels obtained from v and v's descendants

$$y'\mathbf{L}(T)y = \sum_{i,j \in E(T)} (y_i - y_j)^2 =$$

$$\sum_{i,j \in E(T)/E_1} (x_i - x_j)^2 + \sum_{i,j \in E_1/w} (y_i - y_j)^2 + (x_u + x_v)^2 >$$

$$\sum_{i,j \in E(T)/E_1} (x_i - x_j)^2 + \sum_{i,j \in E_1/w} (x_i - x_j)^2 + (x_u - x_v)^2 =$$

$$\sum_{i,j \in E} (x_i - x_j)^2 = \mu(T).$$

因此,存在一个单位向量 $\mathbf{y} = (y_1, y_2, \dots, y_n)'$,使 $\mu(T) < y' \mathbf{L}(T) y$. 这与定理 1 矛盾,故有 $x_u x_v < 0$. 2)由于 \mathbf{x} 为 T的一个规范拉普拉斯谱向量,因而有 $(D(T) - A(T)) \mathbf{x} = \mu(T) \mathbf{x}$. 因此 $(d_{v_i} - \mu(T)) x_i = \sum_{v_j \in N_T(v_i)} x_j$. 所以有 $\sum_{i=1}^n (d_{v_i} - \mu(T)) x_i = \sum_{i=1}^n \sum_{v_j \in N_T(v_i)} x_j$. 从而 $\sum_{i=1}^n d_{v_i} x_i - \mu(T) \sum_{i=1}^n x_i = \sum_{i=1}^n d_{v_i} x_i$,所以 $\sum_{i=1}^n x_i = 0$.

2 图的拉普拉斯谱半径对应的特征向量的应用

2.1 加边对图的拉普拉斯谱半径的影响

定理 5 设 u,v 是树 T 的两个顶点. 记顶点 u,v 之间的距离为 d(u,v)=k,其中,k 为奇数且 $k \ge 3$. 若 G 是由 T 添加新边设 uv 后所得到的图,则有 $\mu(G)>\mu(T)$.

证明 设 $\mathbf{x} = (x_1, x_2, \dots, x_n)'$ 为 T 的一个规范拉普拉斯谱向量, x_i 对应于顶点 v_i , $1 \leq i \leq n$. 由于 k 为奇数且 $k \geq 3$,由前面定理 4 可得: $x_u x_v \leq 0$.记 T = G 的边集分别为 E(T)和 E(G),因此有

$$\mu(G) = \max_{\|y\|=1} y' \mathbf{L}(G) y = \max_{\|y\|=1} \sum_{i,j \in E(G)} (y_i - y_j)^2 \geqslant \sum_{i,j \in E(G)} (x_i - x_j)^2 > \sum_{i,j \in E(T)} (x_i - x_j)^2 = \mu(T).$$

即 $\mu(G) > \mu(T)$.

2.2 嫁接对图的拉普拉斯谱半径的影响

定理 6 设 u,v 是树 T 的两个顶点,T = (V(T), E(T)),且有 $N_T(v)/(N_T(u) \cup \{u\}) = \{v_1, v_2, \dots, v_s\}$, $1 \le s \le d_v$,设 $\mathbf{x} = (x_1, x_2, \dots, x_n)'$ 为 T 的一个规范拉普拉斯谱向量, x_i 对应于顶点 v_i , $1 \le i \le n$, T^* 是由 T 删除边 vv_i ,添加边 uv_i 后所得到的树 $(1 \le i \le s)$ (图 3). 若 $|x_u| \ge |x_v|$,则 $\mu(T) < \mu(T^*)$.

证明 对于树 T,设 T = (V, E) 形成一根树,且顶点 v 是 v_1, v_2, \dots, v_s 的父节点. 令 T_1 是由顶点 v, v_1, v_2, \dots, v_s 及 v_1 , v_2, \dots, v_s 的所有子孙组成的子树, $T_1 = (V_1, E_1)$. 类似的,对于树 T^* ,设 $T^* = (V^*, E^*)$ 形成一根树,u 为其根节点,并且顶点 u 是 v_1, v_2, \dots, v_s 的父节点. 令 T_1^* 是由顶点 u, v_1, v_2, \dots, v_s 及 v_1, v_2, \dots, v_s 的所有子孙组成的子树,且 T_1^* 的层次(高度加 1)为 k. 记 $E'_1 = E_1/\{vv_1, vv_2, \dots, vv_s\}$.

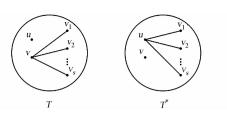


图 3 树 T 和树 T^* Fig. 3 Tree T and T^*

令 $y_i = x_i (v_i \in V/V(T_1))$, $y_v = x_v$, $y_{w_1} = -\operatorname{sgn}(x_u) | x_{w_1} |$ (任意 w_1 是 T_1^* 的第 2 层上的顶点), $y_{w_2} = (-1)^2 \operatorname{sgn}(x_u) | x_{w_2} |$ (任意 w_2 是 T_1^* 的第 3 层上的顶点),…, $y_{w_{k-1}} = (-1)^{k-1} \operatorname{sgn}(x_u) | x_{w_{k-1}} |$ (任意 w_{k-1} 是 T_1^* 的第 k 层上的顶点). 则可得 $\|y\| = 1$, 且

$$y'L(T^*)y - x'L(T)x = \sum_{i,j \in E^*} (y_i - y_j)^2 - \sum_{i,j \in E} (x_i - x_j)^2 =$$

$$\left[\sum_{i,j \in E'_1} (y_i - y_j)^2 + \sum_{i,j \in E^*/E'_1} (y_i - y_j)^2\right] -$$

$$\left[\sum_{i,j \in E'_1} (x_i - x_j)^2 - \sum_{i,j \in E/E'_1} (x_i - x_j)^2\right] =$$

$$\sum_{i,j \in E^*/E'_1} (y_i - y_j)^2 - \sum_{i,j \in E/E'_1} (x_i - x_j)^2 =$$

$$\sum_{i,j \in E^*/E'_1} (|x_u| + |x_{v_i}|)^2 - \sum_{i=1}^{s} (|x_v| + |x_{v_i}|)^2 =$$

$$\sum_{i=1}^{s} (|x_u|^2 - |x_v|^2) + 2\sum_{i=1}^{s} |x_{v_i}| (|x_u| - |x_v|) \geqslant 0.$$

即有 y'**L** (T^*) $y \geqslant x'$ **L**(T)x. 因此

$$\mu(T) = x' \mathbf{L}(T) x \leqslant y' \mathbf{L}(T^*) y \leqslant \max_{\|y\| = 1} y' \mathbf{L}(T^*) y = \mu(T^*). \tag{1}$$

故有 $\mu(T) \leqslant \mu(T^*)$.

若 $\mu(T) = \mu(T^*)$,则式(1)中等号成立,故有 $\mu(T) = y' \mathbf{L}(T^*) y = \mu(T^*)$.因而,由定理 1 可以得 $\mathbf{L}(T^*) y = \mu(T^*) y$.又 $\mathbf{L}(T^*) = D(T^*) - A(T^*)$,所以

$$\mu(T^*)y_v = (\mathbf{L}(T^*)y)_v = d_{T^*}(v)y_v - \sum_{v_i \in N_{T^*}(v)} y_i,$$
(2)

式(2)中 $:d_{T^*}(v)$ 为顶点 v 在树 T^* 中的度.

又 $L(T)x = \mu(T)x$,类似的有

$$\mu(T)x_v = (\mathbf{L}(T)x)_v = d(v)x_v - \sum_{v_i \in N_T(v)} x_i = d(v)y_v - \sum_{v_i \in N_{T^*}(v)} x_i - \sum_{i=1}^{s} x_i.$$
(3)

由式(2)~(3)可得

$$(\mu(T^*) - \mu(T))x_v = \sum_{i=1}^s x_i - sx_v + \sum_{v \in N_{T^*}(v)} (x_i - y_i).$$

不失一般性,设 $x_v > 0$.

若 $x_u > 0$,由定理 4 可得 $(\mu(T^*) - \mu(T))x_v = \sum_{i=1}^s x_i - sx_v < 0$.因而有 $\mu(T) > \mu(T^*)$,这与假设矛盾.

若 $x_u < 0$,由定理 4 可得($\mu(T^*) - \mu(T)$) $x_v = \sum_{i=1}^s x_i - sx_v + \sum_{v_i \in N_{T^*}(v)} (x_i - |x_i|) < 0$. 有 $\mu(T) > \mu(T^*)$,这也与假设矛盾.

综上所述,若 $|x_u| \ge |x_v|$,则 $\mu(T) < \mu(T^*)$.

推论 1 设 T^* 是如定理 6 所定义的树,若 $\mathbf{y} = (y_1, y_2, \dots, y_n)'$ 为 T^* 的一个规范拉普拉斯谱向量, y_i 对应于顶点 v_i ,1 $\leq i \leq n$,则 $|y_u| > |y_v|$.

证明 反证法. 若 $|y_u| \le |y_v|$,由定理 6 可得 $\mu(T) > \mu(T^*)$. 这与定理 6 结论矛盾,顾原命题成立.

推论 2 设 G=(V,E) 为含 n 个顶点的树,r,s,t 是 G 的三个不同的顶点,且 $rs \in E(G)$, $rt \notin E(G)$. 设 G^* 是由 G 删除边 rs 添加边 rt 后所得到的树. 设 $\mathbf{x} = (x_1, x_2, \dots, x_n)'$ 为 G 的一个规范拉普拉斯谱向量, x_i 对应于顶点 v_i ,1 $\leq i \leq n$, $\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*)'$ 为 G^* 的一个规范拉普拉斯谱向量, x_i^* 对应于顶点 v_i^* ,1 $\leq i \leq n$,若 $|x_i| \geq |x_i|$,则 $|x_i^*| > |x_i^*|$.

证明 显然,由题意可知,G 是由 G^* 删除边 rt 添加边 rs 后所得到的树. 假设 $|x_t^*| \le |x_s^*|$,由定理 6 可得 $\mu(G) > \mu(G^*)$. 又 $|x_t| \ge |x_s|$,由定理 6 得 $\mu(G) < \mu(G^*)$. 这样导致矛盾,因此原命题成立.

参考文献:

- [1] 汪秋分,宋海洲.图谱理论中一些定理的新证明[J].华侨大学学报:自然科学版,2012,33(4):477-480.
- [2] 刘亚国. 图论中邻接矩阵的应用[J]. 忻州师范学院学报,2008,24(4):18-19.
- [3] 谭尚旺,张德龙.一定条件下图的拉普拉斯矩阵的谱半径[J].广西科学,2008,15(4):352-356.
- [4] LI Jian-xi, SHIU Wai-chee, CHAN Wai-hong. The Laplacian spectral radius of some graphs[J]. Linear Algebra Appl, 2009, 431(1):99-103.
- [5] WU Bao-feng, XIAO En-li, HONG Yuan. The spectral radius of trees on k pendant vertices[J]. Linear Algebra Appl, 2005, 395(15):343-349.
- [6] GUO Ji-ming. The effect on the Laplacian spectral radius of a graph by adding or grafting edges[J]. Linear Algebra Appl, 2006, 413(1):59-71.
- [7] 袁西英,吴宝丰,肖恩利. 树的运算及其 Laplace 谱[J]. 华东师范大学学报:自然科学版,2004,50(2):13-18.
- [8] GUO Ji-ming. On the Laplacian spectral radius of a tree[J]. Linear Algebra Appl, 2003, 368(15): 379-385.
- [9] TAN Shang-wang. On the Laplacian spectral radius of trees[J]. Chinese Quarterly Journal of Mathematics, 2010, 25 (4):615-625.
- [10] ZHANG Xiao-dong. The Laplacian spectral radii of trees with degree sequences[J]. Discrete Mathematics, 2008, 308(15):3143-3150.

Properties and Applications of the Eigenvector Corresponding to the Laplacian Spectral Radius of a Graph

WANG Qiu-fen, SONG Hai-zhou

(School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China)

Abstract: In this paper, we study the properties and applications of the eigenvector corresponding to the Laplacian spectral radius of a graph. Some results on the Laplacian spectral radius of a graph by adding and grafting edges are obtained.

Keywords: connected graph; tree; Laplacian spectral radius; graft transformation; eigenvector

(责任编辑:钱筠 英文审校:黄心中)