[1]石擎天,黄心中.双调和型映照的Landau定理[J].华侨大学学报(自然科学版),2014,35(1):102-106.[doi:10.11830/ISSN.1000-5013.2014.01.0102]
 SHI Qing-tian,HUANG Xin-zhong.Landau’s Theorem for Biharmonic-Type Mappings[J].Journal of Huaqiao University(Natural Science),2014,35(1):102-106.[doi:10.11830/ISSN.1000-5013.2014.01.0102]
点击复制

双调和型映照的Landau定理()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第1期
页码:
102-106
栏目:
出版日期:
2014-01-20

文章信息/Info

Title:
Landau’s Theorem for Biharmonic-Type Mappings
文章编号:
1000-5013(2014)01-0102-05
作者:
石擎天 黄心中
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
SHI Qing-tian HUANG Xin-zhong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
双调和型映照 Landau定理 微分算子 Schwarz引理
Keywords:
biharmonic-type mapping Landau’s theorem differential operator Schwarz lemma
分类号:
O174.51;O174.55
DOI:
10.11830/ISSN.1000-5013.2014.01.0102
文献标志码:
A
摘要:
利用单位圆盘上有界调和映照的系数估计及Schwarz引理,对双调和映照F(z)及其在微分算子L作用下LF(z)的Landau定理中的单叶半径进行估计.所得结果改进了刘名生等和Chen等的研究结果.
Abstract:
Using the coefficient inequalities for bounded harmonic mappings on the unit disk and Schwarz lemma, Landau’s theorems for biharmonic mappings F(z)and LF(z), where L is a differential operator, are considered. Our results improve the latest one made by Liu Ming-sheng and Chen.

参考文献/References:

[1] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42(10):689-692.
[2] ABDULHADI Z,MUHANNA Y,KHURI S.On univalent solutions of the biharmonic equations[J].Journal of Inequalities Applications,2005(5):469-478.
[3] ABDULHADI Z,MUHANNA Y,KHURI S.On some properties of solutions of the biharmonic equation[J].Applied Mathematics and Computation,2006,177(1):346-351.
[4] LIU Ming-sheng,LIU Zhi-wen.On bloch constants for certain harmonic mappings[J].Southeast Asian Bulletin of Mathematics,2012,36(3):1-10.
[5] 刘名生,刘志文,朱玉灿.某类双调和映射的Landau型定理[J].数学学报,2011,54(1):69-80.
[6] COLONNA F.The Bloch constant of bounded harmonic mappings[J].Indiana Univ Math J,1989,38:829-840.
[7] LIU Ming-sheng.Landau theorem for planar harmonic mappings[J].Comput Math Appl,2009,57(7):1142-1126.
[8] 夏小青,黄心中.一类双调和映照的单叶半径估计[J].华侨大学学报:自然科学版,2011,32(2):218-221.
[9] CHEN S,PONNUSAM S,WANG X.Landau theorem for certain biharmonic mappings[J].Applied Mathematics and Computation,2009,208(2):427-433.
[10] CHEN S,PONNUSAM S,WANG X.On properties of solutions of the p-harmonic equation[EB/OL].(2012-04-12)[2012-09-30] .http://arxiv.org/pdf/1204.2767.pdf.
[11] 夏小青,黄心中.平面有界调和函数的Bloch常数估计[J].数学年刊,2010,31A(6):769-776.

相似文献/References:

[1]李东征,陈行堤.调和映照的Landau定理[J].华侨大学学报(自然科学版),2012,33(5):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
 LI Dong-zheng,CHEN Xing-di.Landau Theorem for Planar Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(1):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
[2]黄心中,黄赟.某类调和函数的单叶半径和Landau定理[J].华侨大学学报(自然科学版),2016,37(1):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
 HUANG Xinzhong,HUANG Yun.On the Univalent Radius and Landau Theorem for Some Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2016,37(1):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]

备注/Memo

备注/Memo:
收稿日期: 2012-10-23
通信作者: 黄心中(1957-),男,教授,主要从事函数论的研究.E-mail:huangxz@hqu.edu.cn.
基金项目: 福建省自然科学基金资助项目(2011J0101)
更新日期/Last Update: 2014-01-20