参考文献/References:
[1] 冯康,秦孟兆.哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2002:1-501.
[2] BRIDGES T J,REICH S.Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity[J],Physics Letter A,2001,284(4/5):184-193.
[3] REICH S.Multi-symplectic Runge-kutta methods for Hamiltonian wave equations[J].J Comput Phys,2000,157(5):473-499.
[4] CHEN Jing-bo,QIN Meng-zhao.Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation[J].Electron Trans Numer Anal,2001,12:193-204.
[5] ZENG Wen-ping.Constructing symplectic schemes for Schrödinger equation by using hyperbolic function[J].Acta Mathematics Applicatae Sinica,1996,19(3):424-430.
[6] 黄浪扬.广义非线性Schrödinger方程的多辛算法与模方守恒律[J].计算物理,2009,26(5):693-698.
[7] HONG Jia-lin,KONG Ling-hua.Novel multisymplectic integrators for nonlinear fourth-order Schrödinger equation with trapped term[J].Commun Comput Phys,2010,7(3):613-630.
[8] KONG Ling-hua,CAO Ying,WANG Lan,et al.Split-step multisymplectic integrator for fourth-order Schrödinger equation with cubic nonlinear term[J].Chinese J Comput Phys,2011,28(5):730-736.
[9] WANG Yu-shun,LI Qing-hong,SONG Yong-zhong.Two new simple multi-symplectic schemes for the nonlinear Schrödinger equation[J].Chin Phys Lett,2008,25(5):1538-1540.
[10] CAI Jia-xiang,MIAO Jun.New explicit multisymplectic scheme for the complex modified Korteweg-de Vries equation[J].Chin Phys Lett,2012,29(3):030201.
[11] QIAN Xu,SONG Song-he,GAO Er,et al.Explicit multi-symplectic method for the Zakharov-Kuznetsov equation[J].Chin Phys B,2012,21(7):070206.
[12] 王志焕, 黄浪扬. 组合KdV-mKdV方程的多辛Fourier 拟谱格式[J]. 华侨大学学报:自然科学版,2011,32(4):471-474.