[1]黄浪扬.非线性四阶Schrödinger方程的半显式多辛拟谱格式[J].华侨大学学报(自然科学版),2013,34(6):706-709.[doi:10.11830/ISSN.1000-5013.2013.06.0706]
 HUANG Lang-yang.Simi-Explicit Multi-Symplectic Pseudo-Spectral Scheme for the Nonlinear Four-Order Schrödinger Equation[J].Journal of Huaqiao University(Natural Science),2013,34(6):706-709.[doi:10.11830/ISSN.1000-5013.2013.06.0706]
点击复制

非线性四阶Schrödinger方程的半显式多辛拟谱格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第34卷
期数:
2013年第6期
页码:
706-709
栏目:
出版日期:
2013-11-20

文章信息/Info

Title:
Simi-Explicit Multi-Symplectic Pseudo-Spectral Scheme for the Nonlinear Four-Order Schrödinger Equation
文章编号:
1000-5013(2013)06-0706-04
作者:
黄浪扬
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
HUANG Lang-yang
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
四阶Schrö dinger方程 半显式 辛欧拉方法 多辛拟谱格式 守恒律 数值实验
Keywords:
four-order Schrö dinger equation simi-explicit symplectic Euler method multi-symplectic pseudo-spectral scheme conservation law numerical experiments
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.2013.06.0706
文献标志码:
A
摘要:
将空间方向的Fourier拟谱方法与时间方向的辛欧拉方法结合在一起,构造出了非线性四阶Schrödinger方程的一个半显式多辛拟谱格式.数值结果表明:所构造的格式在长时间计算后,能很好地保持原方程的电荷守恒性质,是有效可行的数值方法.
Abstract:
Combining the Fourier pseudo-spectral method in spatial direction with symplectic Euler method in time direction together, we construct a simi-explicit multi-symplectic pseudo-spectral scheme for the nonlinear four-order Schrödinger equation. Numerical results show that the scheme constructed in this paper can well preserve the charge conservation nature of the original equation after a long time computation and it is an effective and practicable numerical method.

参考文献/References:

[1] 冯康,秦孟兆.哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2002:1-501.
[2] BRIDGES T J,REICH S.Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity[J],Physics Letter A,2001,284(4/5):184-193.
[3] REICH S.Multi-symplectic Runge-kutta methods for Hamiltonian wave equations[J].J Comput Phys,2000,157(5):473-499.
[4] CHEN Jing-bo,QIN Meng-zhao.Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation[J].Electron Trans Numer Anal,2001,12:193-204.
[5] ZENG Wen-ping.Constructing symplectic schemes for Schrödinger equation by using hyperbolic function[J].Acta Mathematics Applicatae Sinica,1996,19(3):424-430.
[6] 黄浪扬.广义非线性Schrödinger方程的多辛算法与模方守恒律[J].计算物理,2009,26(5):693-698.
[7] HONG Jia-lin,KONG Ling-hua.Novel multisymplectic integrators for nonlinear fourth-order Schrödinger equation with trapped term[J].Commun Comput Phys,2010,7(3):613-630.
[8] KONG Ling-hua,CAO Ying,WANG Lan,et al.Split-step multisymplectic integrator for fourth-order Schrödinger equation with cubic nonlinear term[J].Chinese J Comput Phys,2011,28(5):730-736.
[9] WANG Yu-shun,LI Qing-hong,SONG Yong-zhong.Two new simple multi-symplectic schemes for the nonlinear Schrödinger equation[J].Chin Phys Lett,2008,25(5):1538-1540.
[10] CAI Jia-xiang,MIAO Jun.New explicit multisymplectic scheme for the complex modified Korteweg-de Vries equation[J].Chin Phys Lett,2012,29(3):030201.
[11] QIAN Xu,SONG Song-he,GAO Er,et al.Explicit multi-symplectic method for the Zakharov-Kuznetsov equation[J].Chin Phys B,2012,21(7):070206.
[12] 王志焕, 黄浪扬. 组合KdV-mKdV方程的多辛Fourier 拟谱格式[J]. 华侨大学学报:自然科学版,2011,32(4):471-474.

备注/Memo

备注/Memo:
收稿日期: 2012-09-01
通信作者: 黄浪扬(1974-),男,副教授,主要从事偏微分方程数值解法的研究.E-mail:hly6@163.com.
基金项目: 国家自然科学基金资助项目(11271171, 11126330); 福建省自然科学基金资助项目(2011J01010); 中央高校基本科研业务费专项资金资助, 华侨大学侨办科研基金资助项目(10QZR21)
更新日期/Last Update: 2013-11-20