[1]陈东晓,陈应生.二阶微分方程积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2013,34(5):586-590.[doi:10.11830/ISSN.1000-5013.2013.05.0586]
 CHEN Dong-xiao,CHEN Ying-sheng.Existence Positive Solutions of Boundary Value Problems for Second Order Differential Equations with Integral Conditions[J].Journal of Huaqiao University(Natural Science),2013,34(5):586-590.[doi:10.11830/ISSN.1000-5013.2013.05.0586]
点击复制

二阶微分方程积分边值问题正解的存在性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第34卷
期数:
2013年第5期
页码:
586-590
栏目:
出版日期:
2013-09-20

文章信息/Info

Title:
Existence Positive Solutions of Boundary Value Problems for Second Order Differential Equations with Integral Conditions
文章编号:
1000-5013(2013)05-0586-05
作者:
陈东晓 陈应生
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
CHEN Dong-xiao CHEN Ying-sheng
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
正解 边值问题 不动点理论 Sturm-Liouville 积分
Keywords:
cone positive solution boundary value fixed point theory Strum-Liouville integral
分类号:
O175.8
DOI:
10.11830/ISSN.1000-5013.2013.05.0586
文献标志码:
A
摘要:
研究一类满足Sturm-Liouville 积分边值条件的二阶非线性微分方程的正解存在性.通过转化为等价的积分方程,利用锥上不动点定理及一些分析技巧,建立边值问题存在一个和多个正解的充分条件.该边值条件含有勒贝格-斯梯阶积分,所得的结果是新的.
Abstract:
We study the existence of positive solutions for Strum-Liouville boundary value problems of second-order nonlinear functional differential equations. By converting problems into equivalent integral equations, using fixed point theory in cones and some analysis techniques, we obtain some sufficient conditions which guarantee the existence of one and multiple positive solutions for the problem.The conditions of boundary value in this paper contain Stieltijes integral, and the obtained results are new.

参考文献/References:

[1] KONG Ling-ju.Second order singular boundary value problems with integral boundary conditions[J].Nonlinear Analysis: Theory Methods and Applications,2010,72(5):2628-2638.
[2] 曹君艳,王全义.一类二阶微分方程两点边值问题的正解存在性[J].华侨大学学报:自然科学版,2010,31(1):113-117.
[3] YANG Chen,ZHAI Cheng-bo,YAN Ju-rang.Positive solutions of the three-point boundary value problem for second order differential equations with an advanced argument[J].Nonlinear Analysis: Theory Methods and Applications,2006,65(10):2013-2023.
[4] ZHANG Guo-wei,SUN Jing-xian.Positive solutions of m-point boundary value problems[J].Math Anal Appl,2004,291(2):406-418.
[5] ZHAI Cheng-bo.Positive solutions for semi-positone three-point boundary value problems[J].Journal of Computational and Applied Mathematic,2009,228(1):279-286.
[6] HAO Xi-nan,LIU Li-shan,WU Yong-hong.On positive solutions of an m-point nonhomogeneous singular boundary value problem[J].Nonlinear Analysis: Theory Methods and Applications,2010,73(8):2532-2540.
[7] JIANG Ji-qiang,LIU Li-shan,WU Yong-hong.Second-order nonlinear singular Sturm-Liouville problems with integral boundary conditions[J].Applied Mathematics and Computation,2009,215(4):1573-1582.
[8] CHASREECHAI S,TARIBOON J.Positive solutions to generalized second-order threeoint intergeral boundary-value problems[J].Electronic Journal of Differential Equations,2011(14):1-14.

相似文献/References:

[1]曹君艳,王全义.一类二阶微分方程两点边值问题的正解存在性[J].华侨大学学报(自然科学版),2010,31(1):113.[doi:10.11830/ISSN.1000-5013.2010.01.0113]
 CAO Jun-yan,WANG Quan-yi.The Existence of Positive Solutions for Second-Order Two-Point Boundary Value Problem[J].Journal of Huaqiao University(Natural Science),2010,31(5):113.[doi:10.11830/ISSN.1000-5013.2010.01.0113]
[2]林秋莲,王全义.一类二阶奇异微分方程三点积分边值问题的正解[J].华侨大学学报(自然科学版),2012,33(2):212.[doi:10.11830/ISSN.1000-5013.2012.02.0212]
 LIN Qiu-lian,WANG Quan-yi.Positive Solutions of Three-Point Integral Boundary Value Problems for A Kind of Second-Order Singular Differential Equations[J].Journal of Huaqiao University(Natural Science),2012,33(5):212.[doi:10.11830/ISSN.1000-5013.2012.02.0212]
[3]邹黄辉,王全义.非线性奇异三阶两点边值问题单调正解的存在性[J].华侨大学学报(自然科学版),2012,33(6):699.[doi:10.11830/ISSN.1000-5013.2012.06.0699]
 ZOU Huang-hui,WANG Quan-yi.Existence on Monotone Positive Solutions for Nonlinear Singular Third Order Two-Point Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2012,33(5):699.[doi:10.11830/ISSN.1000-5013.2012.06.0699]
[4]林秋莲,王全义.一类具有积分边值条件的二阶奇异微分方程正解的存在性[J].华侨大学学报(自然科学版),2013,34(6):696.[doi:10.11830/ISSN.1000-5013.2013.06.0696]
 LIN Qiu-lian,WANG Quan-yi.Existence of Positive Solutions for A Class of Second Order Singular Differential Equations with Nonlinear Integral Boundary Conditions[J].Journal of Huaqiao University(Natural Science),2013,34(5):696.[doi:10.11830/ISSN.1000-5013.2013.06.0696]
[5]王全义,邹黄辉.一类n阶非线性三点边值问题单调正解的存在性[J].华侨大学学报(自然科学版),2014,35(3):344.[doi:10.11830/ISSN.1000-5013.2014.03.0344]
 WANG Quan-yi,ZOU Huang-hui.Monotone Positive Solutions for A Class of nth Order Nonlinear Three-Point Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2014,35(5):344.[doi:10.11830/ISSN.1000-5013.2014.03.0344]
[6]薛雷.一类常微分方程的数值解法[J].华侨大学学报(自然科学版),2017,38(1):131.[doi:10.11830/ISSN.1000-5013.201701026]
 XUE Lei.Numerical Solution for Class of Ordinary Differential Equations[J].Journal of Huaqiao University(Natural Science),2017,38(5):131.[doi:10.11830/ISSN.1000-5013.201701026]
[7]邹黄辉,王全义.一类四阶微分方程积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2011,32(6):699.[doi:10.11830/ISSN.1000-5013.2011.06.0699]
 ZOU Huang-hui,WANG Quan-yi.Existence of Positive Solutions for a Class of Fourth-Order Differential Equations with Integral Boundary Value Problem[J].Journal of Huaqiao University(Natural Science),2011,32(5):699.[doi:10.11830/ISSN.1000-5013.2011.06.0699]
[8]陈应生,汪东树.一阶非线性脉冲微分方程两点边值问题的正解[J].华侨大学学报(自然科学版),2013,34(1):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
 CHEN Ying-sheng,WANG Dong-shu.Positive Solutions of Impulsive Boundary Value Problems for First-Order Two-Point Nonlinear Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(5):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
[9]王全义,邹黄辉.一类四阶奇异非线性积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2014,35(1):112.[doi:10.11830/ISSN.1000-5013.2014.01.0112]
 WANG Quan-yi,ZOU Huang-hui.Existence of Positive Solutions for a Class of Fourth-Order Singular Nonlinear Integral Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2014,35(5):112.[doi:10.11830/ISSN.1000-5013.2014.01.0112]

备注/Memo

备注/Memo:
收稿日期: 2012-05-30
通信作者: 陈东晓(1977-),男,讲师,主要从事常微分方程和泛函微分方程的研究.E-mail:cys19760828@163.com.
基金项目: 国务院侨办科研基金资助项目(09QZR10)
更新日期/Last Update: 2013-09-20