[1]徐亮,林从谋,张在晨,等.节理岩体剪切强度的计算方法及其应用[J].华侨大学学报(自然科学版),2013,34(5):570-575.[doi:10.11830/ISSN.1000-5013.2013.05.0570]
 XU Liang,LIN Cong-mou,ZHANG Zai-chen,et al.Discussion on the Calculation Method of Shear Strength of Jointed Rock Mass[J].Journal of Huaqiao University(Natural Science),2013,34(5):570-575.[doi:10.11830/ISSN.1000-5013.2013.05.0570]
点击复制

节理岩体剪切强度的计算方法及其应用()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第34卷
期数:
2013年第5期
页码:
570-575
栏目:
出版日期:
2013-09-20

文章信息/Info

Title:
Discussion on the Calculation Method of Shear Strength of Jointed Rock Mass
文章编号:
1000-5013(2013)05-0570-06
作者:
徐亮 林从谋 张在晨 葛冰洋
华侨大学 岩土工程研究所, 福建 厦门 361021
Author(s):
XU Liang LIN Cong-mou ZHANG Zai-chen GEI Bing-yang
Institute of Geotechnical Engineering, Huaqiao University, Xiamen 361021, China
关键词:
岩体力学 节理岩体 峰值剪切强度 粗糙度 起伏度
Keywords:
rock mechanics jointed rock mass peak shear strength roughness waviness
分类号:
U451
DOI:
10.11830/ISSN.1000-5013.2013.05.0570
文献标志码:
A
摘要:
根据36组直剪试验结果,对基于起伏度和粗糙度等剪切强度公式进行对比,给出其建议适用性范围.研究结果表明:在只考虑起伏度时,Ladanyi-Archambault公式的计算结果更接近实际值;而只考虑粗糙度时,采用JRC-JMC模型和Grasselli改进公式进行预测更加合理;节理岩体的峰值剪切强度与法向应力有关,当法向应力较小时,节理面起伏度是节理岩体峰值强度的主要影响因素,而随着法向应力的增大,采用粗糙度计算结果与实际值相吻合.
Abstract:
According to 36 direct shear test results, the various shear strength equations based on waviness or roughness were investigated, and their adaptability was suggested. The results show that the calculation result of Ladanyi-Archambault is close to experimental value when considering only waviness, and the calculation results of JRC-JMC model and Grasselli formula are more reasonable than others when considering only surface roughness. The peak shear strength of joint rock mass is related to normal stress, for small normal stress, the waviness is the main influencing factor; with increasing normal stress, the calculation results considering roughness conform well to the experimental values.

参考文献/References:

[1] 李肖音,李建军,巫建军,等.粗糙岩石节理剪切强度的修正公式[J].河北理工学院学报,2005,27(1):4-8.
[2] 杜时贵,胡晓飞,郭霄,等.JRC-JCS模型与直剪实验对比研究[J].岩石力学与工程学报,2008,27(1):2747-2753.
[3] 汤海生,张鹏程,汪洋.水作用下岩体断裂强度的探讨[J].岩石力学与工程学报,2004,23(19):3337-3341.
[4] 肖卫国,兑关锁,朱玉萍,等.充填节理岩体本构模型研究[J].岩石力学与工程学报,2010,29(2):3463-3468.
[5] 徐磊,任青文.不同充填度岩石分形节理抗剪强度的数值模拟[J].煤田地质与勘察,2007,35(3):52-54.
[6] 陈记.岩石节理面剪切流变的实验研究[J].河海工学院报,2004,13(4):74-77.
[7] BANDIS S,SC B,SC M.Experimrntal studies of scale effects of shear strength, and deformation of rock joints[D].Leeds:University of leeds,1980:32-33.
[8] 张林洪,朱云兰.现有结构面抗剪强度确定方法的评述及新方法的提出[J].昆明理工大学学报,2000,25(3):50-53.
[9] 夏才初,孙宗颀.工程岩体节理力学[M].上海:同济大学出版社,2002:94-119.
[10] AMADEI B,WIBOWO J,STURE S.et al.Applicability of existing model to predict the behavior of replicas of natural fractures of welded tuff under different boundary conditions[J].Geotechnical and Geological Engineering,1998,16(2):79-128.
[11] GRASSELLI G.Shear strength of rock joints based on quantified surface description[D].Switzerland:Swiss Federal Institute of Technology,2001:295-314.
[12] GRASSELLI G,WIRTH J,EGGER P.Quantitative three-dimensional description of a rough surface and parameter evolution with shearing[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(6):789-800.
[13] GRASSELLI G,EGGER P.Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters[J].International Journal of Rock Mechanics and Mining Sciences,2003,40(1):25-40.
[14] 朱小明,李海波,刘博,等.含二阶起伏体的模拟岩体节理试样剪切特性试验研究[J].岩土力学,2012,33(2):354-360.
[15] 朱小明,李海波,刘博,等.含一阶和二阶起伏体节理剪切强度的试验研究[J].岩石力学与工程学报,2011,30(9):1810-1818.
[16] 易成,郝彬,朱红光,等.裂隙岩体的一体两介质模型抗剪性能研究[J].岩石力学与工程学报,2011,30(6):1207-1215.
[17] PATTON F D. Multiple modes of shear failure in rock[C]//Proceedings of the First Congress of International Society of Rock Mechanics.Lisbon:[s.n.],1996:509-513.
[18] 吕则欣,陈华兴.岩石强度理论研究[J].西部探矿工程,2009,1(1):5-8.
[19] LADANYI B,ARCHAMBAULT G.Simulation of the shear behavior of a jointed rock mass[C]//Proceedings of the 11th US Symposium on Rock Mechanics and Rock Engineering.Berkeley:[s.n.],1977,10(1/2):1-54.
[20] HOEK E,BRAY J W.岩石边坡工程[M].北京:冶金工业出版社,1983:92-108.
[21] 唐志成,夏才初,宋英龙,等.人工模拟节理缝制剪胀模型及峰值抗剪强度分析[J].岩石力学与工程学报,2012,31(1):3038-3044.
[22] 唐志成,夏才初,宋英龙,等.Grasselli节理峰值抗剪强度公式再探[J].岩石力学与工程学报,2012,31(2):356-364.
[23] International Society for Rock Mechnics.Suggestedmethods for the quantiative description of discontinuities in rock masses[J].International Journal of Rock Mechnics and Mining Science and Geomechanics Abstracts,1978,15(2):319-368.
[24] 赵坚.岩石节理剪切强度的JRC-JMC新模型[J].岩石力学与工程学报,1998,17(4):349-357.
[25] 宋建波,张卓元,于远忠,等.岩体经验强度准则及其在地质工程中的应用[M].北京:地质出版社,2002:78-92.
[26] 唐志成,夏才初,黄继辉,等.节理峰值后归一位移软化模型[J].岩石力学与工程学报,2011,32(7):2013-2024.
[27] 杜时贵,胡晓飞,郭霄,等.JRC-JCS模型和JRC-JMC模型与直剪试验对比研究[J].岩石力学与工程学报,2008,27(增刊1):2747-2753.

备注/Memo

备注/Memo:
收稿日期: 2013-01-22
通信作者: 林从谋(1957-),男,教授,主要从事岩石与隧道工程的研究.E-mail:cmlin@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(51278208); 福建省交通科技发展基金资助项目(200910)
更新日期/Last Update: 2013-09-20