[1]佘志炜,王全义.一类一阶泛函微分方程非平凡周期解的存在性[J].华侨大学学报(自然科学版),2013,34(4):460-465.[doi:10.11830/ISSN.1000-5013.2013.04.0460]
 SHE Zhi-wei,WANG Quan-yi.Existence of Nontrivial Periodic Solutions for a Class of First Order Nonlinear Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(4):460-465.[doi:10.11830/ISSN.1000-5013.2013.04.0460]
点击复制

一类一阶泛函微分方程非平凡周期解的存在性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第34卷
期数:
2013年第4期
页码:
460-465
栏目:
出版日期:
2013-07-20

文章信息/Info

Title:
Existence of Nontrivial Periodic Solutions for a Class of First Order Nonlinear Functional Differential Equations
文章编号:
1000-5013(2013)04-0460-06
作者:
佘志炜 王全义
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
SHE Zhi-wei WANG Quan-yi
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
泛函微分方程 时滞 不动点定理 非平凡 周期解
Keywords:
functional differential equation delay cone fixed point theorem nontrivial periodic solution
分类号:
O175
DOI:
10.11830/ISSN.1000-5013.2013.04.0460
文献标志码:
A
摘要:
利用锥不动点定理及分析技巧, 研究一类一阶时滞泛函微分方程非平凡周期解的存在性问题, 得到该类方程存在非平凡周期解的充分条件.所得结果推广并改进了S. G. KANG和G. ZHANG的研究成果.
Abstract:
In this paper, by employing fixed point theorem in cones and some analysis techniques, we study the problem on the existence of nontrivial periodic solutions for a class of first order nonlinear functional differential equations, and obtain some sufficient conditions which guarantee the existence of nontrivial periodic solutions for the equations. Our results extend and improve the research results made by S. G. KANG and G. ZHANG.

参考文献/References:

[1] BELAR J.Population models with state-dependent delays[J].Lect Notes Pure Appl Math Dekker,1991,131:165-176.
[2] MACKEY M C,MILTON J.Feedback delays and the origin of blood cell dynamics[J].Comm Theoret Biol,1990,1:229-327.
[3] MACKEY M C.Commodity price fluctuations: Price dependent delays and nonlinearities as explanatory factors[J].J Econom Theory,1989,48(2):497-509.
[4] 佘志炜,王全义.一类具有偏差变元的二阶泛函微分方程周期解[J].华侨大学学报:自然科学版,2009,30(6):709-714.
[5] HAN Fei,WANG Quan-yi.Existence of multiple positive periodic solutions for differential equation with state-dependent delays[J].J Math Anal Appl,2006,324(2):908-920.
[6] KANG Shu-gui,ZHANG Guang.Existence of nontrivial periodic solutions for first order functional differential equations[J].Appl Math Lett,2005,18(1):101-107.
[7] MA Ru-yun,CHEN Rui-peng,Chen Tian-lan.Existence of positive periodic solutions of nonlinear first-order delayed differential equations[J].J Math Anal Appl,2011,384(2):527-535.
[8] 郭大均.非线性范函分析[M].济南:山东科学技术出版社,2002:300-301.

相似文献/References:

[1]王全义.关于捕食者-食饵系统正周期解存在性的一个反例[J].华侨大学学报(自然科学版),2007,28(1):111.[doi:10.3969/j.issn.1000-5013.2007.01.030]
 WANG Quan-yi.A Counterexample on the Existence of Positive Periodic Solutions for Two-Species Predator-Prey Diffusive Systems[J].Journal of Huaqiao University(Natural Science),2007,28(4):111.[doi:10.3969/j.issn.1000-5013.2007.01.030]
[2]王全义.具状态依赖时滞的泛函微分方程周期解[J].华侨大学学报(自然科学版),2007,28(2):212.[doi:10.3969/j.issn.1000-5013.2007.02.026]
 WANG Quan-yi.Periodic Solutions for Functional Differential Equations with State-Dependent Delay[J].Journal of Huaqiao University(Natural Science),2007,28(4):212.[doi:10.3969/j.issn.1000-5013.2007.02.026]
[3]佘志炜,王全义.一类具有偏差变元的二阶泛函微分方程周期解[J].华侨大学学报(自然科学版),2009,30(6):709.[doi:10.11830/ISSN.1000-5013.2009.06.0709]
 SHE Zhi-wei,WANG Quan-yi.Periodic Solutions for a Class of Second Order Functional Differential Equations with a Deviating Argument[J].Journal of Huaqiao University(Natural Science),2009,30(4):709.[doi:10.11830/ISSN.1000-5013.2009.06.0709]
[4]汪东树,王全义.脉冲时滞Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2010,31(5):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(4):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
[5]汪东树,王全义.一类具多时滞和脉冲Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2011,32(5):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Several Delays[J].Journal of Huaqiao University(Natural Science),2011,32(4):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
[6]曹君艳,王全义.一类具多时滞二阶非线性微分方程的周期解[J].华侨大学学报(自然科学版),2012,33(3):348.[doi:10.11830/ISSN.1000-5013.2012.03.0348]
 CAO Jun-yan,WANG Quan-yi.Periodic Solutions for Second-Order Differential Equations with Deviating Arguments[J].Journal of Huaqiao University(Natural Science),2012,33(4):348.[doi:10.11830/ISSN.1000-5013.2012.03.0348]
[7]汪东树,王全义.具时滞和脉冲的植化相克系统周期正解[J].华侨大学学报(自然科学版),2012,33(4):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of Two-Specics Impulsive Systems with Time Delays in Plankton Allelopathy[J].Journal of Huaqiao University(Natural Science),2012,33(4):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
[8]徐昌进,姚凌云.具有时滞的神经网络模型的分支分析[J].华侨大学学报(自然科学版),2012,33(6):694.[doi:10.11830/ISSN.1000-5013.2012.06.0694]
 XU Chang-jin,YAO Ling-yun.Bifurcation Analysis of a Delayed Neural Networks[J].Journal of Huaqiao University(Natural Science),2012,33(4):694.[doi:10.11830/ISSN.1000-5013.2012.06.0694]
[9]章培军,王震,杨颖惠.具有收获和Beddington-DeAngelis功能反应的捕食-食饵模型[J].华侨大学学报(自然科学版),2017,38(4):579.[doi:10.11830/ISSN.1000-5013.201704025]
 ZHANG Peijun,WANG Zhen,YANG Yinghui.Predator-Prey Model With Beddington-DeAngelis Functional Response and Harvesting[J].Journal of Huaqiao University(Natural Science),2017,38(4):579.[doi:10.11830/ISSN.1000-5013.201704025]
[10]李艳艳,李钟慎.二阶时滞多智能体系统分组一致性分析[J].华侨大学学报(自然科学版),2021,42(1):9.[doi:10.11830/ISSN.1000-5013.202006004]
 LI Yanyan,LI Zhongshen.Group Consensus Analysis on Second-Order Multi-AgentSystems With Time Delay[J].Journal of Huaqiao University(Natural Science),2021,42(4):9.[doi:10.11830/ISSN.1000-5013.202006004]

备注/Memo

备注/Memo:
收稿日期: 2012-09-23
通信作者: 王全义(1955-),男,教授,主要从事常微分方程和泛函微分方程的研究.E-mail:wqy19555@163.com.
基金项目: 国务院侨办科研基金资助项目(09QZR10)
更新日期/Last Update: 2013-07-20