[1]黄小萍,曾有栋.一类带退化扩散的哈密尔顿-雅克比方程组的适定性[J].华侨大学学报(自然科学版),2013,34(3):339-343.[doi:10.11830/ISSN.1000-5013.2013.03.0339]
 HUANG Xiao-ping,ZENG You-dong.Well-Posedness for a Hamilton-Jacobi System with Degenerate Diffusion[J].Journal of Huaqiao University(Natural Science),2013,34(3):339-343.[doi:10.11830/ISSN.1000-5013.2013.03.0339]
点击复制

一类带退化扩散的哈密尔顿-雅克比方程组的适定性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第34卷
期数:
2013年第3期
页码:
339-343
栏目:
出版日期:
2013-05-20

文章信息/Info

Title:
Well-Posedness for a Hamilton-Jacobi System with Degenerate Diffusion
文章编号:
1000-5013(2013)03-0339-05
作者:
黄小萍 曾有栋
福州大学 数学与计算机科学学院, 福建 福州 350108
Author(s):
HUANG Xiao-ping ZENG You-dong
College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
关键词:
哈密尔顿-雅克比方程组 适定性 弱解 局部存在性 爆破二择一 正则性
Keywords:
Hamilton-Jacobi system well-posedness weak solutions local existence blow up alternative regularizing effect
分类号:
O175.02
DOI:
10.11830/ISSN.1000-5013.2013.03.0339
文献标志码:
A
摘要:
讨论带狄利克雷边界条件的退化扩散哈密尔顿-雅克比方程组?tu-div(|?u|p1-2?u)=|?v|q1,?tv-div(|?v|p2-2?v)=|?u|q2的弱解性质,其中Ω
Abstract:
This paper discusses the properties of weak solutions to a degenerate viscous Hamilton-Jacobi system ?tu-div(|?u|p1-2?u)=|?v|q1,?tv-div(|?v|p2-2?v)=|?u|q2, with Dirichlet boundary conditions in a bounded domain Ω?RN, where qi>max{(p1-1),(p2-1)} and pi>2,i=1,2. We constructe a unique, maximal in time, W1,∞×W1,∞ solution, without size restriction on the initial data and to establish the blow up alternative in W1,∞×W1,∞ norm. Furthermore, we also obtain a regularizing effect for(ut,vt).

参考文献/References:

[1] BEN-ARTZI M,SOUPLET P,WEISSLER F.The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces[J].J Math Pures Appl,2002,81(4):343-378.
[2] QUITTNER P,SOUPLET P.Superlinear parabolic problems: Blow-up,global existence and steady states[M]. Switzerland:Birkhauser Verlag AG,2007:329.
[3] CHEN C,NAKAO M,OHARA Y.Global existence and gradientestimates for quasilinear parabolic equations of the m-Laplacian type with a strong perturbation[J].Adv Math Sci Appl,2000,10(1):225-237.
[4] ZHAO Jun-ning.Existence and nonexistence of solutions for ut=div(|?u|p-2?u)+f(?u,u,x,t)[J].J Math Anal Appl,1993,172(1):130-146.
[5] LAURENÇOT P,STINNER C.Convergence to separate variables solutions for a degenerate parabolic equation with gradient source[J].J Dynam.Differential Equations,2012,24(1):29-49.
[6] BARLES G,LAURENÇOT P,STINNER C.Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation[J].Asymptot Anal,2010,67(3/4):229-250.
[7] ATTOUCHI A.Well-posedness and gradientblow-upestimatenear the boundary for a Hamilton-Jacobi equation with degenerate diffusion[J].J Differential Equations,2012,253(8):2474-2492.
[8] KAWOHL B,KUTEV N.Comparison principle and Lipschitz regularity for viscosity solutions of some classes of nonlinear partial differential equations[J].Funkcial Ekvac,2000,43(2):241-253.
[9] DIBENEDETTO E,FRIEDMAN A.Hölder estimates for nonlinear degenerate parabolic systems Journal fur die reine und angewandte Mathematik[J].J reine angew Math,1985,357(1):1-22.
[10] SIMON J.Compact sets in the space Lp(0,T;B)[J].Ann Mat Pura Appl,1986,146(1):65-96.
[11] ZHAO Jun-ning.A note to the regularity of solutions for the evolution p-Laplacian equations[J].Methods Appl Anal,2001,8(4):595-598.

备注/Memo

备注/Memo:
收稿日期: 2012-11-12
通信作者: 曾有栋(1961-),男,教授,主要从事偏微分方程的研究.E-mail:zengyd@fzu.edu.cn.
基金项目: 福建省自然科学基金资助项目(Z0511015)
更新日期/Last Update: 2013-05-20