[1]刘德友,牛九肖.求解一类新的二次规划问题的时滞投影神经网络方法[J].华侨大学学报(自然科学版),2013,34(2):230-235.[doi:10.11830/ISSN.1000-5013.2013.02.0230]
 LIU De-you,NIU Jiu-xiao.A Delayed Projection Neural Network for Solving a New Quadratic Programming Problems[J].Journal of Huaqiao University(Natural Science),2013,34(2):230-235.[doi:10.11830/ISSN.1000-5013.2013.02.0230]
点击复制

求解一类新的二次规划问题的时滞投影神经网络方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第34卷
期数:
2013年第2期
页码:
230-235
栏目:
出版日期:
2013-03-20

文章信息/Info

Title:
A Delayed Projection Neural Network for Solving a New Quadratic Programming Problems
文章编号:
1000-5013(2013)02-0230-06
作者:
刘德友 牛九肖
燕山大学 理学院, 河北 秦皇岛 066004
Author(s):
LIU De-you NIU Jiu-xiao
College of Science, Yanshan University, Qinhuangdao 066004, China
关键词:
亚正定矩阵 全局稳定 时滞投影 李雅普诺夫函数 最优解
Keywords:
subdefinite matrices globally stable delayed projection lyapunov function optimal solution
分类号:
O175
DOI:
10.11830/ISSN.1000-5013.2013.02.0230
文献标志码:
A
摘要:
把Q为正定矩阵或半正定矩阵推广到Q为亚正定矩阵,利用时滞投影神经网络模型和李亚普诺夫函数的特性,给出判断这种特殊二次优化最优解的充分条件.最后通过数值仿真说明了该网络的有效性.
Abstract:
In this paper, we studied the stability of the optimal solution of a new quadratic programming problem which is the promotion of the convex quadratic programming. We give the sufficient condition to determine the stability of the equilibrium point and propose a delayed projection neural network to solve this quadratic programming. By constructing a suitable Lyapunov function, the proposed neural network is proved to be globally stable. Simulation results with some applications show the efficient of the proposed neural network.

参考文献/References:

[1] XIA You-shen, FENG Gang, WANG Jun.A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations[J].Neural Networks,2004,17(7):1003-1015.
[2] XUE Xiao-ping,BIAN Wei.A project neural network for solving degenerate convex quadratic program[J].Neurocomputing,2007,70(13/15):2449-2459.
[3] LIU Qing-shan,CAO Jin-de,Global exponential stability of discrete-time recurrent neural network for solving quadratic programming problems subject to linear constraints[J].Neurocomputing,2011,74(17):3494-3501.
[4] TAO Qing,CAO Jin-de,Demin Sun.Neural network for quadratic programming problems[J].Applied Mathematics and Computation, 2001,124(2):251-260.
[5] HASAN G O, NEZAM M A.An efficient simplified neural network for solving linear and quadratic programming problems[J].Applied Mathematics and Computation,2006,175(1):452-464.
[6] 李洁坤,丁明智,虞继敏.非线性时滞细胞神经网络稳定性分析[J].郑州大学学报:理学版,2010,42(3):54-58.
[7] 杨华芬,杨有,尚晋.一种改进的进化神经网络优化设计方法[J].郑州大学学报:工学版,2010,31(5):116-120.
[8] YANG Yong-qing, CAO Jin-de.A feedback neural network for solving convex constraint optimization problems[J].Applied Mathematics and Computation,2008,201(1/2):340-350.
[9] BERTSEKAS D P. Parallel and distributed computation: Numerical methods[M]. Englewood Cliffs: Prentice-Hall, 1989.
[10] HALE J K,VERDUYN-LUNEL S M.Introduction to functional differential equations[M].New York:Springer,1993.

备注/Memo

备注/Memo:
收稿日期: 2012-08-05
通信作者: 刘德友(1961-),男,教授,主要从事神经网络稳定性的研究.E-mail:liudeyouysu@163.com.
基金项目: 国家自然科学基金资助项目(71071133)
更新日期/Last Update: 2013-03-20