[1]王健,徐余法,陈国初.基于相对核的属性约简[J].华侨大学学报(自然科学版),2013,34(1):10-13.[doi:10.11830/ISSN.1000-5013.2013.01.0010]
 WANG Jian,XU Yu-fa,CHEN Guo-chu.Attribute Reduction Based on the Relative Core[J].Journal of Huaqiao University(Natural Science),2013,34(1):10-13.[doi:10.11830/ISSN.1000-5013.2013.01.0010]
点击复制

基于相对核的属性约简()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第34卷
期数:
2013年第1期
页码:
10-13
栏目:
出版日期:
2013-01-20

文章信息/Info

Title:
Attribute Reduction Based on the Relative Core
文章编号:
1000-5013(2013)01-0010-04
作者:
王健12 徐余法2 陈国初2
1. 华东理工大学 信息科学与工程学院, 上海 200237;2. 上海电机学院 信息学院, 上海 200240
Author(s):
WANG Jian12 XU Yu-fa2 CHEN Guo-chu2
1. College of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; 2. School of Information, Shanghai DianJi University, Shanghai 200240, China
关键词:
粗糙集 属性约简 正域 相对核
Keywords:
rough set attribute reduction positive domain relative core
分类号:
TP18;TP301.6
DOI:
10.11830/ISSN.1000-5013.2013.01.0010
文献标志码:
A
摘要:
从相对核的角度,提出了一种新的属性约简方法.首先,求出条件属性相对决策属性的相对正域,然后根据相对正域求得属性的相对核.用这些相对核属性对论域进行划分,在对论域划分后,将可以完全正确的分类删除,减小论域,如此迭代下去,直到论域完全划分,最后求出这些核属性并集,去除并集的冗余信息,即可得到属性约简集.该方法可直接利用核属性来对论域进行划分,不用再计算每个属性的重要度,减少了计算量,在每次迭代的过程中,减小论域,缩减搜索空间,降低了时间复杂度.
Abstract:
From the point of view of relative core, this paper proposes a new attribute reduction method. Firstly, the condition attributes and the decision attributes are used to calculate the positive domain. Then, the relative core of the condition attributes is got based on the positive domain. Secondly, the samples are divided with these relative core attributes. At the end of this division, the samples that can be divided correctly is deleted. And then the samples are reduced. This iteration continues until the samples are completely divided. At last, the union of relative core is got and redundant information is removed, and then attribute reduction set is obtained. This method can use core attributes to divide the samples directly. No longer to calculate the important degree of each attribute, and then the amount of computation are reduced. In each iteration process, the samples, the search space and the time complexity are reduced.

参考文献/References:

[1] 王国胤,姚一豫,于洪.粗糙集理论与应用研究综述[J].计算机学,2009,32(7):1229-1246.
[2] PAWLAK Z.Rough set[J].International Journal of Computer and Information Sciences,1982,11(5):341-356.
[3] CHAN C C,GRZYMALA-BUSSE J W,ZIARKO W P.Rough sets and current trends in computing[C]//Proceedings of the 6th International Conference on RSCTC.Akron:[s.n.],2008.
[4] AN A,STEFANOWSKI J,RAMANNA S,et al.Rough sets, fuzzy sets, data mining and granular computing[C]//Proceedings of the 11th International Conference on RSFDGrC.Toronto:[s.n.],2007.
[5] WANG G Y,LI T R,GRZYMALA-BUSSE J W,et al.Rough sets and knowledge technology[C]//Third International Conference on Rough Sets and Knowledge Technology.Chengdu:[s.n.],2008.
[6] 曾小军,黄宜坚.利用AR模型和支持向量机的调速阀故障识别[J].华侨大学学报:自然科学版,2011,32(1):13-17.
[7] 陈叶旺,于金山.一种改进的朴素贝叶斯文本分类方法[J].华侨大学学报:自然科学版,2011,32(4):401-404.
[8] PAWLAK Z,GRZYMALA-BUSSE J,SLOWINSKI R,et al.Rough sets[J].Communications of the ACM,1995,38(11):89-95.
[9] PAWLAK Z.Why rough sets[C]//Proceedings of the Fifth IEEE International Conference on Fuzzy Systems.New Orleans: IEEE Press,1996:738-743.
[10] WONG S K M,ZIARKO W.On optional decision rules in decision tables[J].Bulletin of Polish Academy of Science,1985,33(11/12):693-696.
[11] HU Xiao-hua,GERCONE N.Learning in relational databases: A rough set approach[J].International Journal of Computational Intelligence,1995,11(2):323-338.
[12] 叶东毅.Jelonek属性约简算法的一个改进[J].电子学报,2000,28(12):81-82.
[13] 刘少辉,盛秋戬,史忠植.一种新的快速计算正区域的方法[J].计算机研究与发展,2003,40(5):637-642.
[14] 刘少辉,盛秋戬,吴斌,等.Rough集高效算法的研究[J].计算机学报,2003,26(5):524-529.
[15] 胡峰,王国胤.二维表快速排序的复杂度分析[J].计算机学报,2007,30(6):963-968.
[16] 徐章艳,刘作鹏,杨炳儒,等.一个复杂度为max(O(|C||U|),O(|C|~2|U/C|))的快速属性约简算法[J].计算机学报,2006,29(3):391-399.
[17] 王国胤,于洪,杨大春.基于条件信息熵的决策表约简[J].计算机学报,2002,25(7):759-766.
[18] 瞿彬彬,卢炎生.基于粗糙集的属性约简算法研究[J].华中科技大学学报:自然科学版,2005,33(8):30-33.

相似文献/References:

[1]冯远静,李良福,冯祖仁.粗糙集CMAC神经网络故障诊断策略[J].华侨大学学报(自然科学版),2004,25(3):318.[doi:10.3969/j.issn.1000-5013.2004.03.023]
 Feng Yuanjing,Li Liangfu,Feng Zuren.Rough Set-Based CMAC Neural Network for Fault Diagrosis[J].Journal of Huaqiao University(Natural Science),2004,25(1):318.[doi:10.3969/j.issn.1000-5013.2004.03.023]
[2]罗来鹏,范自柱.粗糙集中几种粒结构的代数关系[J].华侨大学学报(自然科学版),2019,40(5):694.[doi:10.11830/ISSN.1000-5013.201812041]
 LUO Laipeng,FAN Zizhu.Algebraic Relation of Several Granular Structures in Rough Sets[J].Journal of Huaqiao University(Natural Science),2019,40(1):694.[doi:10.11830/ISSN.1000-5013.201812041]
[3]吴荣,张文娟,李进金.对象导出三支概念格的熵属性约简[J].华侨大学学报(自然科学版),2021,42(5):693.[doi:10.11830/ISSN.1000-5013.202106031]
 WU Rong,ZHANG Wenjuan,LI Jinjin.Entropy Attribute Reduction of Object-Induced Three-Way Concept Lattice[J].Journal of Huaqiao University(Natural Science),2021,42(1):693.[doi:10.11830/ISSN.1000-5013.202106031]

备注/Memo

备注/Memo:
收稿日期: 2012-06-15
通信作者: 徐余法(1964-),男,教授,主要从事智能算法和故障诊断的研究.E-mail:xyf690@21cn.com.
基金项目: 上海市教委重点科学基金资助项目(J51901, 09ZZ211); 上海市自然科学基金资助项目(11ZR1413900); 上海电机学院重点科学基金资助项目(09XKJ01)
更新日期/Last Update: 2013-01-20