[1]庄清渠,任全伟.一类四阶微积分方程的差分迭代解法[J].华侨大学学报(自然科学版),2012,33(6):709-714.[doi:10.11830/ISSN.1000-5013.2012.06.0709]
 ZHUANG Qing-qu,REN Quan-wei.Finite Difference Approximation of a Class of Fourth-Order Integro-Differential Equations[J].Journal of Huaqiao University(Natural Science),2012,33(6):709-714.[doi:10.11830/ISSN.1000-5013.2012.06.0709]
点击复制

一类四阶微积分方程的差分迭代解法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第6期
页码:
709-714
栏目:
出版日期:
2012-11-20

文章信息/Info

Title:
Finite Difference Approximation of a Class of Fourth-Order Integro-Differential Equations
文章编号:
1000-5013(2012)06-0709-06
作者:
庄清渠 任全伟
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
ZHUANG Qing-qu REN Quan-wei
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
四阶微积分方程 差分方法 迭代算法 误差分析
Keywords:
fourth-order integro-differential equation finite-difference method iterative algorithm error estimate
分类号:
O241.8
DOI:
10.11830/ISSN.1000-5013.2012.06.0709
文献标志码:
A
摘要:
针对研究吊桥模型而建立的四阶微积分方程,提出利用有限差分法进行求解.采用Newton型迭代法处理非线性项,大大提高了收敛效率,并给出差分逼近的误差分析.数值算例说明了算法的可行性和有效性.
Abstract:
Finite difference method is proposed to approximate a fourth-order integro-differential equation modeling the suspension bridge. Newton type iteration methods are used to deal with the nonlinear term, which greatly improve the computational efficiency. Moreover, error estimate of the finite difference approximation is obtained. Numerical experiments are given to confirm the feasibility and efficiency of the algorithm.

参考文献/References:

[1] DANG Q A,LE T S.Iterative method for solving a problem with mixed boundary conditions for biharmonic equation[J].Adv Appl Math Mech,2009,1(5):683-698.
[2] DANG Q A,LUAN V T.Iterative method for solving a nonlinear fourth order boundary value problem[J].Computers and Mathematics with Applications,2010,60(1):112-121.
[3] ZHUANG Qing-qu.A Legendre spectral-element method for the one-dimensional fourth-order equations[J].Applied Mathematics and Computation,2011,218(7):3587-3595.
[4] KARMAN T,BIOT M A.Mathematical methods in engineering[M].New York:McGraw-Hill,1940.
[5] SEMPER B.Finite element methods for suspension bridge models[J].Computers and Mathematics with Applications,1993,26(5):77-91.
[6] SEMPER B.Finite element approximation of a fourth order integro-differential equation[J].Applied Mathematics Letters,1994,7(1):59-62.
[7] BREZZI F,FORTIN M.Mixed and hybrid finite element methods[M].New York:Springer-Verlag,1991.
[8] SHERMAN A H.On newton-iterative methods for the solution of systems of nonlinear equations[J].SIAM Journal on Numerical Analysis,1978,15(4):755-771.
[9] KUSRAEV A G.Discrete maximum principle[J].Mathematical Notes,1983,34(2):617-620.
[10] FEIREISl E.Exponential attractors for non-autonomous systems:Long-time behaviour of vibrating beams[J].Mathematical methods in the applied sciences,1992,15(4):287-297.
[11] LIONS J L,MAGENES E.Problemes aux limites non homogenes et applications[M].Paris:Dunod,1968.
[12] SAMARSKII A A.The theory of difference schemes[M].New York:Marcel Dekker,2001.

相似文献/References:

[1]任全伟,庄清渠.一类四阶微积分方程的紧差分格式[J].华侨大学学报(自然科学版),2014,35(2):232.[doi:10.11830/ISSN.1000-5013.2014.02.0232]
 REN Quan-wei,ZHUANG Qing-qu.Compact Difference for a Class of Fourth-Order Integro-Differential Equations[J].Journal of Huaqiao University(Natural Science),2014,35(6):232.[doi:10.11830/ISSN.1000-5013.2014.02.0232]

备注/Memo

备注/Memo:
收稿日期: 2012-06-07
通信作者: 庄清渠(1980-),男,讲师,主要从事微分方程数值解法的研究.E-mail:qqzhuang@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11126330); 福建省自然科学基金资助项目(2011J05005); 中央高校基本科研业务费专项基金资助项目, 国务院侨办科研基金资助项目(10QZR21)
更新日期/Last Update: 2012-11-20