[1]高真圣.一类无AR条件的超线性p-双调和方程的解的存在性[J].华侨大学学报(自然科学版),2012,33(6):705-708.[doi:10.11830/ISSN.1000-5013.2012.06.0705]
 GAO Zhen-sheng.Existence for the Solutions of a Class of Superlinear p-Biharmonic Equations without AR Condition[J].Journal of Huaqiao University(Natural Science),2012,33(6):705-708.[doi:10.11830/ISSN.1000-5013.2012.06.0705]
点击复制

一类无AR条件的超线性p-双调和方程的解的存在性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第6期
页码:
705-708
栏目:
出版日期:
2012-11-20

文章信息/Info

Title:
Existence for the Solutions of a Class of Superlinear p-Biharmonic Equations without AR Condition
文章编号:
1000-5013(2012)06-0705-04
作者:
高真圣
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
GAO Zhen-sheng
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
p-双调和方程 临界群 (C)条件 Morse理论
Keywords:
p-biharmonic equations critical groups (C)condition Morse theory
分类号:
O175.23
DOI:
10.11830/ISSN.1000-5013.2012.06.0705
文献标志码:
A
摘要:
应用Morse理论,研究Navier边值的p-双调和问题的非平凡解的存在性. 研究表明:问题的非线性项是超线性的,但不满足通常的Ambrosetti-Rabinowitz(AR)条件.在新条件下,计算出了无穷远处的临界群.
Abstract:
In this work, we discuss the existence for the solutions of a class of p-biharmonic equations with Navier boundary value via Morse theory. The nonlinearity of our problem is superliner, but it does not satisfy the Ambrosetti-Rabinowitz(AR)condition. Under the new condition, the critical groups at infinity are computed.

参考文献/References:

[1] CHANG K C.Infinite-dimensional morse theory and multiple solution problems(6): Progress in nonlinear differential equations and their applications[M].Boston:Birkhäuser,1993:997-1049.
[2] MAWHIN J,WILLEM M.Critical point theory and hamiltonian systems applied mathematical sciences[M].New York:Springer-Verlag,1989.
[3] BARTSCH T,LI S. Critical point theory for asymptotically quadratic functionals and applications to problems with resonance[J].Nonlinear Anal, 1997,28(3):419-441.
[4] JEANJEAN L.On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN[C]//Proc Roy Soc Edinburgh Sect.Proc Roy Soc Edinburgh:Sect A,1999,129(4):787-809.
[5] ZOU Wen-ming.Variant fountain theorems and their applications[J].Manuscripta Math,2001,104(3):343-358.
[6] WANG Zhi-qiang.On a superlinear elliptic equation[J].Ann Inst H Poincare,1991,8(1):43-57.
[7] LIU Shi-bo,MEDEIROS E,PERERA K.Multiplicity results for p-biharmonic problems via Morse theory[J]. Commun Appl Anal,2009,13(3):447-455.
[8] FANG Fei,LIU Shi-bo.Nontrivial solutions of superlinear p-Laplacian equations[J].J Math Anal Appl,2009,351(1):138-146.

备注/Memo

备注/Memo:
收稿日期: 2012-04-06
通信作者: 高真圣(1976-),男,讲师,主要从事偏微分方程的研究.E-mail:gaozhensheng@hqu.edu.cn.
基金项目: 中央高校基本科研业务费专项资金资助项目(11QZR18)
更新日期/Last Update: 2012-11-20