[1]吴福荣,洪江彬,李健鹏,等.石墨烯微片聚丙烯/高密度聚乙烯的复合材料的正温效应[J].华侨大学学报(自然科学版),2012,33(5):522-527.[doi:10.11830/ISSN.1000-5013.2012.05.0522]
 WU Fu-rong,HONG Jiang-bin,LI Jian-peng,et al.PTC Effect of Graphene Nanoplatelets/PP/HDPE Composite[J].Journal of Huaqiao University(Natural Science),2012,33(5):522-527.[doi:10.11830/ISSN.1000-5013.2012.05.0522]
点击复制

石墨烯微片聚丙烯/高密度聚乙烯的复合材料的正温效应()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第5期
页码:
522-527
栏目:
出版日期:
2012-09-20

文章信息/Info

Title:
PTC Effect of Graphene Nanoplatelets/PP/HDPE Composite
文章编号:
1000-5013(2012)05-0522-06
作者:
吴福荣 洪江彬 李健鹏 陈国华
华侨大学 材料科学与工程学院, 福建 厦门 361021
Author(s):
WU Fu-rong HONG Jiang-bin LI Jian-peng CHEN Guo-hua
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
石墨烯微片 正温度系数效应 负温度系数效应 聚丙烯 高密度聚乙烯
Keywords:
Graphene Nanoplatelets positive temperature coefficient negative temperature coefficient polypropylene high-density polyethylene
分类号:
TQ325.1
DOI:
10.11830/ISSN.1000-5013.2012.05.0522
文献标志码:
A
摘要:
以KNG-150石墨烯微片(GNPs)为导电填料,PP(聚丙烯)/HDPE(高密度聚乙烯)复合体系为基体材料,制备石墨烯微片/PP/HDPE导电复合材料,研究GNPs质量分数,PP/HDPE质量比对材料的正温度系数效应(PTC)强度和负温度系数效应(NTC)强度的影响. 结果表明:GNPs质量分数处在渗滤区间6%时,材料的PTC强度达到最大值;PP的加入可以有效地提高材料的PTC强度,同时还抑制了NTC效应;当PP/HDPE质量比为3∶7时,效果最佳,此时PTC强度为5.58,NTC强度仅为0.25.
Abstract:
In this paper, the KNG-150 graphene nanoplatelets(GNPs)was used as the conductive filler, and the polypropylene(PP)/high density polyethylene(HDPE)composite system were used as the matrix material, produced the GNPs/PP/HDPE conductive composite, the effect of the GNPs contents and the proportion of PP/HDPE on the intensity PTC and NTC are invented. The result showed that the intensity PTC of this composite reach the max when the content of the GNPs was 6%; The PTC intensity efficiently enhanced and the NTC intensity was inhibited as the PP was added into the composite. When the proportion of m(PP)∶m(HDPE)was 3∶7, this composite reached the best result, the PTC and NTC intensity was 5.58 and 0.25.

参考文献/References:

[1] SEO M K, RHEE K Y, PARK S J. Influence of electro-beam irradiation on PTC/NTC behaviors of carbon blacks/HDPE conducting polymer composites[J]. Current Applied Physics 2011,11(3):428-433.
[2] BAO S P, LIANG G D, TJONG S C. Effect of mechanical stretching on electrical conductivity and positive temperature coefficient characteristics of poly(vinylidene fluoride)/carbon nanofiber composites prepared by non-solvent precipitation[J]. Carbon, 2011,49(5):1758-1768.
[3] BAI B C, KANG S C, IM J S. Effect of oxyfluorinated multi-walled carbon nanotube additives on positive temperature coefficient/negative temperature coefficient behavior in high-density polyethylene polymeric switches[J]. Materials Research Bulletin, 2011,46(9):1391-1397.
[4] CHEN Guo- hua, LU Jin- rong, LU Wei et al. Time-dependence of piezo-resistive behavior for polyethylene/foliated graphite nanocomposites[J]. Polymer International,2005,54(10):1689-1693
[5] LENG S, LI G, ZHENG L. Influences of Ba/Ti ratios on the positive temperature coefficient of resistivity effect of Y-doped BaTiO3-(Bi1/2Na 1/2)TiO3 ceramics[J]. Journal of the American Ceramic Society,2011,94(5):1340-1342.
[6] ZHANG Yi-chuan, CHEN T,ZENG Bao-qing,et al. Tunable positive temperature coefficient of resistivity in an electrically conducting polymer/graphene composite[J]. Applied. Physics letters,2010,96(25):251907(1-3).
[7] ZHOU Jian, JIA Shao-jin, JIANG Ping-kai,et al.Positive temperature coefficient characteristics of carbon-black-filled PVDF composites[J].Materials Science and Engineering,2011,27(7):42-45.
[8] LI Q, BASAVARAJAIAH S, KIM NH. Synergy effect of hybrid fillers on the positive temperature coefficient behavior of polypropylene/ultra-high molecular weight polyethylene composites[J]. Journal of Applied Polymer Science,2010,116(1):116-124.
[9] DAI K, XU X B, LI Z M. Electrically conductive carbon black(CB)filled in situ microfibrillar poly(ethylene terephthalate)(PET)/polyethylene(PE)composite with a selective CB distribution[J]. Polymer,2007,48(3):849-859.
[10] FOULGER SH. Electrical properties of composites in the vicinity of the percolation threshold[J]. Journal of Applied Polymer Science,1999,72(12):1573-1582.
[11] EZQUERRA T A,KULESCZA M,CRUZ C S.Charge transport in polyethylene-graphite composite materials[J].Advanced Materials,1990,2(12):597-600.

备注/Memo

备注/Memo:
收稿日期: 2012-04-26
通信作者: 陈国华(1964-),男,教授,主要从事功能高分子材料的研究.E-mail:hdcgh@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(20574025); 中央高校基本科研业务费专项资金资助项目(JB-JC1001)
更新日期/Last Update: 2012-09-20