[1]陈应生.一类二阶具偏差变元微分方程周期解[J].华侨大学学报(自然科学版),2012,33(4):467-471.[doi:10.11830/ISSN.1000-5013.2012.04.0467]
 CHEN Ying-sheng.Periodic Solutions for a Class of Second Order Differential Equation with Deviating Arguments[J].Journal of Huaqiao University(Natural Science),2012,33(4):467-471.[doi:10.11830/ISSN.1000-5013.2012.04.0467]
点击复制

一类二阶具偏差变元微分方程周期解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第4期
页码:
467-471
栏目:
出版日期:
2012-07-20

文章信息/Info

Title:
Periodic Solutions for a Class of Second Order Differential Equation with Deviating Arguments
文章编号:
1000-5013(2012)04-0467-05
作者:
陈应生
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
CHEN Ying-sheng
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
微分方程 周期解 重合度 偏差变元
Keywords:
differential equation periodic solution coincidence degree deviating arguments
DOI:
10.11830/ISSN.1000-5013.2012.04.0467
文献标志码:
A
摘要:
研究具有偏差变元的二阶微分方程x″(t)+h(x’(t))+f(x(t))x’(t)+g(t,x(t-τ(t)))=p(t)的周期解的存在性问题,利用重合度理论,在满足一定条件下,得到方程至少存在一个周期解的新结果.
Abstract:
In this paper, we study the problem on the existence of periodic solutions for a class of second order differential equations x″(t)+h(x’(t))+f(x(t))x’(t)+g(t,x(t-τ(t)))=p(t).By means of the coincidence degree theory, one new result is obtained under some conditions.

参考文献/References:

[1] LIU Bing-wen,HUANG Li-hong.Existence and uniqueness of periodic solutions for a kind of Liénard equation with a deviating argument[J].Applied Math Letter,2008,21(1):51-56.
[2] ZHAO Jun-fang,GENG Feng-jie,ZHAO Jian-feng,et al.Positive solutions to a new kind Strum-Liouville-like four-point boundary value problem[J].Applied Mathematics and Computation,2010,217(2):811-819.
[3] 鲁世平,葛渭高,郑祖庥.具偏差变元的Rayleigh方程周期解问题[J].数学学报,2004,47(2):299-304.
[4] 佘志伟,王全义.一类具有偏差变元的二阶泛函微分方程的周期解[J].华侨大学学报:自然科学版,2009,30(6):709-714.
[5] 李鹏程.二阶非线性泛函微分方程周期解的存在定理[J].吉林大学学报:理学版,2003,41(3):272-275.
[6] 陈新一.二阶非线性泛函微分方程周期解的存在定理[J].西北民族大学学报:自然科学版,2010,31(1):1-4.
[7] 匡继昌.常用不等式[M].济南:山东科学技术出版社,2010.

相似文献/References:

[1]张上泰.一阶微分方程初值问题的单调叠代术[J].华侨大学学报(自然科学版),1990,11(4):315.[doi:10.11830/ISSN.1000-5013.1990.04.0315]
 Zhang Shangtai.Monotone Iterative Technique for Initial Value Problems in First Order Differential Equations[J].Journal of Huaqiao University(Natural Science),1990,11(4):315.[doi:10.11830/ISSN.1000-5013.1990.04.0315]
[2]王全义.关于概自守微分方程[J].华侨大学学报(自然科学版),1991,12(3):279.[doi:10.11830/ISSN.1000-5013.1991.03.0279]
 Weng Quanyl.On Almost-Automorphic Differential Equations[J].Journal of Huaqiao University(Natural Science),1991,12(4):279.[doi:10.11830/ISSN.1000-5013.1991.03.0279]
[3]王全义.一类周期微分系统的同期解[J].华侨大学学报(自然科学版),1993,14(1):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
 Wang Quanyi.Periodic Solutions for a Class of Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(4):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
[4]王全义.概周期微分方程的概周期解[J].华侨大学学报(自然科学版),1993,14(3):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
 Wang Quanyi.Almost Periodic Solutions of Almost Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(4):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
[5]王全义.纯量Volterra积分微分方程的周期解[J].华侨大学学报(自然科学版),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
 Wang Quanyi.Periodic Solution of a Scalar Volterra Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),1994,15(4):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
[6]王全义.一类高维周期系统的周期解[J].华侨大学学报(自然科学版),1994,15(4):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
 Wang Quanyi.Periodic Solutions to One Class of Higher Dimensional Periodic Systems[J].Journal of Huaqiao University(Natural Science),1994,15(4):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
[7]王全义.非线性周期系统的不稳定周期解[J].华侨大学学报(自然科学版),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
 Wang Quanyi.Unstable Periodic Solutions of Nonlinear Periodic Systems[J].Journal of Huaqiao University(Natural Science),1995,16(4):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
[8]王全义.纯量微分积分方程的周期解[J].华侨大学学报(自然科学版),1995,16(4):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
 Wang Quanyi.Periodic Solutions of Scalar Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),1995,16(4):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
[9]王全义.具有无限时滞的微积分方程的周期解的存在性与唯一性[J].华侨大学学报(自然科学版),1996,17(4):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
 Wang Quanyi.Existence and Uniqueness of Periodic Solution to the Integro-Differential Equation with infinite Time-Lag[J].Journal of Huaqiao University(Natural Science),1996,17(4):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
[10]王全义.一个造血模型周期解的存在性及唯一性[J].华侨大学学报(自然科学版),1997,18(1):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
 Wang Quanyi.Existence and Uniqueness of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(4):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
[11]佘志炜,王全义.一类二阶微分方程周期解的存在性[J].华侨大学学报(自然科学版),2010,31(2):235.[doi:10.11830/ISSN.1000-5013.2010.02.0235]
 SHE Zhi-wei,WANG Quan-yi.Existence of Periodic Solutions for a Class of Second Order Differential Equations[J].Journal of Huaqiao University(Natural Science),2010,31(4):235.[doi:10.11830/ISSN.1000-5013.2010.02.0235]

备注/Memo

备注/Memo:
收稿日期: 2011-09-21
通信作者: 陈应生(1976-),男,讲师,主要从事常微分及泛函微分方程的研究.E-mail:cyssheng@hqu.edu.cn.
基金项目: 国务院侨办科研基金资助项目(09QZR10); 福建省自然科学基金资助项目(Z0511026)
更新日期/Last Update: 2012-07-20