[1]汪东树,王全义.具时滞和脉冲的植化相克系统周期正解[J].华侨大学学报(自然科学版),2012,33(4):460-466.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of Two-Specics Impulsive Systems with Time Delays in Plankton Allelopathy[J].Journal of Huaqiao University(Natural Science),2012,33(4):460-466.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
点击复制

具时滞和脉冲的植化相克系统周期正解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第4期
页码:
460-466
栏目:
出版日期:
2012-07-20

文章信息/Info

Title:
Positive Periodic Solutions of Two-Specics Impulsive Systems with Time Delays in Plankton Allelopathy
文章编号:
1000-5013(2012)04-0460-07
作者:
汪东树 王全义
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
WANG Dong-shu WANG Quan-yi
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
植化相克 脉冲 时滞 重合度理论 周期解
Keywords:
allelopathy impulse delay coincidence degree theory periodic solution
分类号:
O175.6
DOI:
10.11830/ISSN.1000-5013.2012.04.0460
文献标志码:
A
摘要:
考虑一类具时滞和脉冲的两种群周期浮游生物植化相克系统, 利用一些分析技巧和重合度理论, 并巧妙构造一个同伦变换, 得到该系统存在周期正解新结果, 推广并改进了相关结果.
Abstract:
In this paper, two-species nonautonomous impulsive systems that arise in plankton allelopathy with time delays and periodic environmental factors are considered. By means of coincidence degree theory and some analysis techniques, we obtain some new results on the existence of positive periodic solutions to the system. Our results generalize and improve the related results.

参考文献/References:

[1] RICE E L.Allelopathy[M].2nd ed.New York:Academic Press,1984.
[2] MAYNARD-SMITH J.Models in ecology[M].Cambridge:Cambridge University,1974:146.
[3] MUKHOPADHYAY A,CHATTOPADHYAY J,TAPASWI P K.A delay differential equations model of plankton allelopathy[J].Math Biosci,1998,149(2):167-189.
[4] 宋新宇,陈兰荪.一类浮游植化相克时滞微分方程的周期解[J].数学物理学报,2003,23A(1):8-13.
[5] JIA J,WANG M,LI M.Periodic solutions for impulsive delay differential equations in the control model of plankton allelopathy[J].Chaos, Solitons and Fractals,2007,32(2):962-968.
[6] LIU Zhi-jun,WU Jian-hua,CHEN Yi-ping,et al.Impulsive perturbations in a periodic delay differential equation model of plankton allelopathy[J].Nonlinear Analysis: Real World Applications,2010,11(1):432-445.
[7] GAINES R E,MAWHIN J L.Coincidence degree and nonlinear differential equations[M].Berlin:Springer-Verlag,1977:40-60.
[8] BAINOV D D,SIMEONOV P S.Impulsive differential equations: Periodic solution and applications[M].New York:Longman Publishing Group,1993.
[9] WANG Qi,DAI Bin-xiang,CHEN Yu-ming.Multiple periodic solutions of an impulsive predator-prey model with Holling-type Ⅳ functional response[J].Math Comput Modelling,2009,49(9/10):1829-1836.

相似文献/References:

[1]郑灿民,陈金涛.HD83—02智能电话机[J].华侨大学学报(自然科学版),1986,7(1):97.[doi:10.11830/ISSN.1000-5013.1986.01.0097]
 Zheng Canmin,Chen Jintao.HD83—02 Intelligent Telephone[J].Journal of Huaqiao University(Natural Science),1986,7(4):97.[doi:10.11830/ISSN.1000-5013.1986.01.0097]
[2]潘金火.一种步进电动机恒流驱动电路[J].华侨大学学报(自然科学版),1988,9(4):447.[doi:10.11830/ISSN.1000-5013.1988.04.0447]
 Pan Jinhuo.A Circuit for Driving the Stepmotor with Constant Current[J].Journal of Huaqiao University(Natural Science),1988,9(4):447.[doi:10.11830/ISSN.1000-5013.1988.04.0447]
[3]林建华.方块脉冲函数在一般型泛函变分近似解法中的应用[J].华侨大学学报(自然科学版),1990,11(1):52.[doi:10.11830/ISSN.1000-5013.1990.01.0052]
 Lin Jianhua.The Application of Block-Pulse Functions in Approximate Solution of Variations with General Types of Functional[J].Journal of Huaqiao University(Natural Science),1990,11(4):52.[doi:10.11830/ISSN.1000-5013.1990.01.0052]
[4]汪东树,王全义.脉冲时滞Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2010,31(5):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(4):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
[5]刘燕,王全义.具有脉冲和时滞合作系统的正周期解存在性[J].华侨大学学报(自然科学版),2010,31(6):697.[doi:10.11830/ISSN.1000-5013.2010.06.0697]
 LIU Yan,WANG Quan-yi.Existence of Positive Periodic Solutions for a Class of Mutualism Systems with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(4):697.[doi:10.11830/ISSN.1000-5013.2010.06.0697]
[6]汪东树,王全义.一类具多时滞和脉冲Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2011,32(5):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Several Delays[J].Journal of Huaqiao University(Natural Science),2011,32(4):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
[7]陈应生,汪东树.脉冲时滞Lotka-Volterra食物链系统的正周期解[J].华侨大学学报(自然科学版),2012,33(2):218.[doi:10.11830/ISSN.1000-5013.2012.02.0218]
 CHEN Ying-sheng,WANG Dong-shu.Positive Periodic Solutions of a Lotka-Volterra Food-Chain System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2012,33(4):218.[doi:10.11830/ISSN.1000-5013.2012.02.0218]
[8]吴丽娇,王全义.具有脉冲的一阶非线性微分方程边值问题的正解[J].华侨大学学报(自然科学版),2012,33(3):342.[doi:10.11830/ISSN.1000-5013.2012.03.0342]
 WU Li-jiao,WANG Quan-yi.Positive Solutions of Boundary Value Problems for Nonlinear First Order Impulsive Differential Equations[J].Journal of Huaqiao University(Natural Science),2012,33(4):342.[doi:10.11830/ISSN.1000-5013.2012.03.0342]
[9]陈应生,汪东树.一阶非线性脉冲微分方程两点边值问题的正解[J].华侨大学学报(自然科学版),2013,34(1):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
 CHEN Ying-sheng,WANG Dong-shu.Positive Solutions of Impulsive Boundary Value Problems for First-Order Two-Point Nonlinear Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(4):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
[10]吴丽娇,王全义.具有脉冲的非线性微分方程边值问题的多个正解[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 WU Li-jiao,WANG Quan-yi.Multiple Positive Solutions of Boundary Value Problems for Nonlinear Impulsive Differential Equations[J].Journal of Huaqiao University(Natural Science),2015,36(4):0.

备注/Memo

备注/Memo:
收稿日期: 2011-09-29
通信作者: 汪东树(1981-),男,讲师,主要从事微分方程理论和应用的研究.E-mail:wangds@hqu.edu.cn.
基金项目: 国务院侨办科研基金资助项目(09QZR10); 中央高校基本科研业务费资金资助项目,华侨大学科研基金资助项目(10HZR025)
更新日期/Last Update: 2012-07-20