[1]吴怀弟,阮育清,张惠英,等.一类纯时滞单种群对数模型的稳定性[J].华侨大学学报(自然科学版),2012,33(3):354-356.[doi:10.11830/ISSN.1000-5013.2012.03.0354]
 WU Huai-di,RUAN Yu-qing,ZHANG Hui-ying,et al.Stability Property of a Pure Delay Single Species Logarithmic Population Model[J].Journal of Huaqiao University(Natural Science),2012,33(3):354-356.[doi:10.11830/ISSN.1000-5013.2012.03.0354]
点击复制

一类纯时滞单种群对数模型的稳定性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第3期
页码:
354-356
栏目:
出版日期:
2012-05-20

文章信息/Info

Title:
Stability Property of a Pure Delay Single Species Logarithmic Population Model
文章编号:
1000-5013(2012)03-0354-03
作者:
吴怀弟阮育清张惠英陈凤德
福州大学数学与计算机科学学院; 福建农林大学计算机与信息学院
Author(s):
WU Huai-di12 RUAN Yu-qing1 ZHANG Hui-ying1 CHEN Feng-de1
1.College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China; 2.College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
纯时滞 对数模型 Bendixson定理 弱积分核 稳定性
Keywords:
pure delay logarithmic population model Bendixson theorem weakly integral kernal stability
分类号:
O175.13
DOI:
10.11830/ISSN.1000-5013.2012.03.0354
文献标志码:
A
摘要:
研究具有弱积分核的纯时滞单种群对数模型.通过适当的变换将系统转成无时滞二维定常系统,借助Bendixson定理证得新系统的平衡点是全局稳定的.结果表明:具有弱积分核的纯时滞单种群对数模型的正平衡点是无条件全局稳定的.
Abstract:
In this paper,a weakly integral kernal pure delay single species Logarithmic population model is studied.By intruducing some suitable change,the system is transformed into a two dimensional ordinary differential system.By applying Bendixson theorem we show that the positive equilibrium of the new system is globally stable,which means that the positive equilibrium of the original system is global stability,and delay has no influnence on the stability property of the system.

参考文献/References:

[1] 吴怀弟, 张娜, 陈凤德. 无穷时滞单种群Logistic捕获模型的渐近行为 [J]. 福州大学学报(自然科学版), 2011(3):325-328.
[2] 陈兰荪, 宋新宇, 陆征一. 数学生态学模型与研究方法 [M]. 成都:四川科学技术出版社, 2003.
[3] CHEN Feng-de, SHI Chun-ling. Dynamic behavior of a Logistic type equation with infinite delay [J]. Acta Mathematicae Applicatae Sinica, 2006(2):313-324.
[4] ATKINSON E N, BARTOSZYNSKI R, BROWN B W. On estimating the growth function of tumors [J]. Mathematical Biosciences, 1989(2):121-136.
[5] CHEN Feng-de. Periodic solutions and almost periodic solutions for a delay multispecies Logarithmic population model [J]. Applied Mathematics and Computation, 2005(2):760-770.doi:10.1016/j.amc.2005.01.085.

备注/Memo

备注/Memo:
福建省教育厅科研基金资助项目(JB09001); 福建省科技创新平台计划项目(20091007)
更新日期/Last Update: 2014-03-23