参考文献/References:
[1] GUIDORIZZI H L. Oscillating and periodic solutions of equations of the type x″+f1 (x)x′+f2 (x)(x’)2 +g(x)=0 [J]. Journal of Mathematical Analysis and Applications, 1993(1):11-23.doi:10.1006/jmaa.1993.1197.
[2] POURNAKI M R, RAZANI A. On the existence of periodic solutions for a class of generalize forced Liénard equations [J]. Applied Mathematics Letters, 2007(3):248-254.doi:10.1016/j.aml.2006.06.004.
[3] 佘志炜, 王全义. 一类具有偏差变元的二阶泛函微分方程周期解 [J]. 华侨大学学报(自然科学版), 2009(6):709-714.
[4] LU Shi-ping, GE Wei-gao. Periodic solutions for a kind of second-order differential equations with multiple deviating arguments [J]. Applied Mathematics and Computation, 2003, (1):195-209.doi:10.1016/S0096-3003(02)00536-2.
[5] LIU Bing. Periodic solutions of a nonlinear second-order differential equation with deviating argument [J]. Journal of Mathematical Analysis and Applications, 2005(1):313-321.doi:10.1016/j.jmaa.2005.01.045.
[6] LU Shi-ping, GE Wei-gao, ZHENG Zu-xiou. Periodic solutions to neutral differential equation with deviating arguments [J]. Applied Mathematics and Computation, 2004(1):17-27.
[7] LU Shi-ping, GE Wei-gao. Periodic solutions for a kind of Liénard equation with a deviating argument [J]. Journal of Mathematical Analysis and Applications, 2004(1):231-243.doi:10.1016/j.jmaa.2003.09.047.
[8] LIU Bin-wen, HUANG Li-hong. Periodic solutions for a kind of Rayleigh equation with a deviating argument [J]. Journal of Mathematical Analysis and Applications, 2006(2):491-500.
[9] GAME R E, MAWHIN J L. Coincidence degree and nonlinear differential equations [M]. Beilin:Springer-Verlag, 1977.
相似文献/References:
[1]王全义.具状态依赖时滞的泛函微分方程周期解[J].华侨大学学报(自然科学版),2007,28(2):212.[doi:10.3969/j.issn.1000-5013.2007.02.026]
WANG Quan-yi.Periodic Solutions for Functional Differential Equations with State-Dependent Delay[J].Journal of Huaqiao University(Natural Science),2007,28(3):212.[doi:10.3969/j.issn.1000-5013.2007.02.026]
[2]佘志炜,王全义.一类具有偏差变元的二阶泛函微分方程周期解[J].华侨大学学报(自然科学版),2009,30(6):709.[doi:10.11830/ISSN.1000-5013.2009.06.0709]
SHE Zhi-wei,WANG Quan-yi.Periodic Solutions for a Class of Second Order Functional Differential Equations with a Deviating Argument[J].Journal of Huaqiao University(Natural Science),2009,30(3):709.[doi:10.11830/ISSN.1000-5013.2009.06.0709]
[3]汪东树,王全义.脉冲时滞Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2010,31(5):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(3):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
[4]刘燕,王全义.具有脉冲和时滞合作系统的正周期解存在性[J].华侨大学学报(自然科学版),2010,31(6):697.[doi:10.11830/ISSN.1000-5013.2010.06.0697]
LIU Yan,WANG Quan-yi.Existence of Positive Periodic Solutions for a Class of Mutualism Systems with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(3):697.[doi:10.11830/ISSN.1000-5013.2010.06.0697]
[5]汪东树,王全义.一类具多时滞和脉冲Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2011,32(5):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Several Delays[J].Journal of Huaqiao University(Natural Science),2011,32(3):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
[6]陈应生,汪东树.脉冲时滞Lotka-Volterra食物链系统的正周期解[J].华侨大学学报(自然科学版),2012,33(2):218.[doi:10.11830/ISSN.1000-5013.2012.02.0218]
CHEN Ying-sheng,WANG Dong-shu.Positive Periodic Solutions of a Lotka-Volterra Food-Chain System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2012,33(3):218.[doi:10.11830/ISSN.1000-5013.2012.02.0218]
[7]汪东树,王全义.具时滞和脉冲的植化相克系统周期正解[J].华侨大学学报(自然科学版),2012,33(4):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of Two-Specics Impulsive Systems with Time Delays in Plankton Allelopathy[J].Journal of Huaqiao University(Natural Science),2012,33(3):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
[8]佘志炜,王全义.一类一阶泛函微分方程非平凡周期解的存在性[J].华侨大学学报(自然科学版),2013,34(4):460.[doi:10.11830/ISSN.1000-5013.2013.04.0460]
SHE Zhi-wei,WANG Quan-yi.Existence of Nontrivial Periodic Solutions for a Class of First Order Nonlinear Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(3):460.[doi:10.11830/ISSN.1000-5013.2013.04.0460]