[1]吴丽娇,王全义.具有脉冲的一阶非线性微分方程边值问题的正解[J].华侨大学学报(自然科学版),2012,33(3):342-347.[doi:10.11830/ISSN.1000-5013.2012.03.0342]
 WU Li-jiao,WANG Quan-yi.Positive Solutions of Boundary Value Problems for Nonlinear First Order Impulsive Differential Equations[J].Journal of Huaqiao University(Natural Science),2012,33(3):342-347.[doi:10.11830/ISSN.1000-5013.2012.03.0342]
点击复制

具有脉冲的一阶非线性微分方程边值问题的正解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第3期
页码:
342-347
栏目:
出版日期:
2012-05-20

文章信息/Info

Title:
Positive Solutions of Boundary Value Problems for Nonlinear First Order Impulsive Differential Equations
文章编号:
1000-5013(2012)03-0342-06
作者:
吴丽娇王全义
华侨大学数学科学学院
Author(s):
WU Li-jiao WANG Quan-yi
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
边值问题 脉冲 不动点定理
Keywords:
boundary value problems impulse cone fixed point theorem
分类号:
O175.8
DOI:
10.11830/ISSN.1000-5013.2012.03.0342
文献标志码:
A
摘要:
研究一类带有脉冲的一阶非线性微分方程边值问题正解的存在问题.通过利用锥不动点定理及一些分析技巧,建立该方程的边值问题存在正解的一些充分条件,推广并改进LIU Yu-ji的研究结果.
Abstract:
We study the existence of positive solutions of a class of boundary value problems for nonlinear first order impulsive differential equations.By applying the cone fixed point theorem and some analysis techniques,we establish some sufficient conditions which determine the existence of positive solutions of boundary value problems for the impulsive differential equations.We extend and improve the research results of LIU Yu-ji in our results..

参考文献/References:

[1] FRABCO D, NIETO J J. Maximum principles for periodic impulsive first order problems [J]. Journal of Computational and Applied Mathematics, 1998(1):144-159.
[2] NIETO J J. Impulsive resonance periodic problems of first order [J]. Applied Mathematics Letters, 2002(4):489-493.doi:10.1016/S0893-9659(01)00163-X.
[3] NIETO J J. Basic theory for nonresonance impulsive periodic problems of first order [J]. Journal of Mathematical Analysis and Applications, 1997(2):423-433.doi:10.1006/jmaa.1997.5207.
[4] LI Jian-li, SHEN Jian-hua. New comparison results for impulsive functional differential equations [J]. Applied Mathematics Letters, 2010.487-493.
[5] LIU Yu-ji. Positive solutions of periodic boundary value problems for nonlinear first-order impulsive differential equations [J]. Nonlinear Analysis-Theory Methods and Applications, 2009.2106-2122.
[6] 韩飞, 王全义. 具状态依赖时滞微分方程的周期正解 [J]. 华侨大学学报(自然科学版), 2005(4):357-360.
[7] 郭大钧. 非线性泛函分析 [M]. 济南:山东科学技术出版社, 2003.286-330.
[8] BAINOV D, SIMEONOV P S. Impulsive differential equations:Periodic solution and applications [M]. London:Longman Publishing Group, 1993.

相似文献/References:

[1]郑灿民,陈金涛.HD83—02智能电话机[J].华侨大学学报(自然科学版),1986,7(1):97.[doi:10.11830/ISSN.1000-5013.1986.01.0097]
 Zheng Canmin,Chen Jintao.HD83—02 Intelligent Telephone[J].Journal of Huaqiao University(Natural Science),1986,7(3):97.[doi:10.11830/ISSN.1000-5013.1986.01.0097]
[2]潘金火.一种步进电动机恒流驱动电路[J].华侨大学学报(自然科学版),1988,9(4):447.[doi:10.11830/ISSN.1000-5013.1988.04.0447]
 Pan Jinhuo.A Circuit for Driving the Stepmotor with Constant Current[J].Journal of Huaqiao University(Natural Science),1988,9(3):447.[doi:10.11830/ISSN.1000-5013.1988.04.0447]
[3]林建华.方块脉冲函数在一般型泛函变分近似解法中的应用[J].华侨大学学报(自然科学版),1990,11(1):52.[doi:10.11830/ISSN.1000-5013.1990.01.0052]
 Lin Jianhua.The Application of Block-Pulse Functions in Approximate Solution of Variations with General Types of Functional[J].Journal of Huaqiao University(Natural Science),1990,11(3):52.[doi:10.11830/ISSN.1000-5013.1990.01.0052]
[4]汪东树,王全义.脉冲时滞Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2010,31(5):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(3):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
[5]刘燕,王全义.具有脉冲和时滞合作系统的正周期解存在性[J].华侨大学学报(自然科学版),2010,31(6):697.[doi:10.11830/ISSN.1000-5013.2010.06.0697]
 LIU Yan,WANG Quan-yi.Existence of Positive Periodic Solutions for a Class of Mutualism Systems with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(3):697.[doi:10.11830/ISSN.1000-5013.2010.06.0697]
[6]汪东树,王全义.一类具多时滞和脉冲Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2011,32(5):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Several Delays[J].Journal of Huaqiao University(Natural Science),2011,32(3):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
[7]姚村,林峰.二阶矩随机Hilbert边值问题[J].华侨大学学报(自然科学版),2011,32(6):714.[doi:10.11830/ISSN.1000-5013.2011.06.0714]
 YAO Cun,LIN Feng.Random Hilbert Boundary Value Problem with Second Order Moment[J].Journal of Huaqiao University(Natural Science),2011,32(3):714.[doi:10.11830/ISSN.1000-5013.2011.06.0714]
[8]陈应生,汪东树.脉冲时滞Lotka-Volterra食物链系统的正周期解[J].华侨大学学报(自然科学版),2012,33(2):218.[doi:10.11830/ISSN.1000-5013.2012.02.0218]
 CHEN Ying-sheng,WANG Dong-shu.Positive Periodic Solutions of a Lotka-Volterra Food-Chain System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2012,33(3):218.[doi:10.11830/ISSN.1000-5013.2012.02.0218]
[9]汪东树,王全义.具时滞和脉冲的植化相克系统周期正解[J].华侨大学学报(自然科学版),2012,33(4):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of Two-Specics Impulsive Systems with Time Delays in Plankton Allelopathy[J].Journal of Huaqiao University(Natural Science),2012,33(3):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
[10]陈应生,汪东树.一阶非线性脉冲微分方程两点边值问题的正解[J].华侨大学学报(自然科学版),2013,34(1):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
 CHEN Ying-sheng,WANG Dong-shu.Positive Solutions of Impulsive Boundary Value Problems for First-Order Two-Point Nonlinear Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(3):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
[11]吴丽娇,王全义.具有脉冲的非线性微分方程边值问题的多个正解[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 WU Li-jiao,WANG Quan-yi.Multiple Positive Solutions of Boundary Value Problems for Nonlinear Impulsive Differential Equations[J].Journal of Huaqiao University(Natural Science),2015,36(3):0.
[12]吴丽娇,王全义.具有脉冲的非线性微分方程边值问题的多个正解[J].华侨大学学报(自然科学版),2014,35(4):466.[doi:10.11830/ISSN.1000-5013.2014.04.0466]
 WU Li-jiao,WANG Quan-yi.Multiple Positive Solutions of Boundary Value Problems for Nonlinear Impulsive Differential Equations[J].Journal of Huaqiao University(Natural Science),2014,35(3):466.[doi:10.11830/ISSN.1000-5013.2014.04.0466]

备注/Memo

备注/Memo:
国务院侨办科研基金资助项目(09QZR10)
更新日期/Last Update: 2014-03-23