[1]徐昌进.两企业竞争与合作的离散动力学模型的周期解[J].华侨大学学报(自然科学版),2012,33(3):337-341.[doi:10.11830/ISSN.1000-5013.2012.03.0337]
 XU Chang-jin.Positive Periodic Solutions of Competition and Corporation Dynamical Model of Two Enterprises[J].Journal of Huaqiao University(Natural Science),2012,33(3):337-341.[doi:10.11830/ISSN.1000-5013.2012.03.0337]
点击复制

两企业竞争与合作的离散动力学模型的周期解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第3期
页码:
337-341
栏目:
出版日期:
2012-05-20

文章信息/Info

Title:
Positive Periodic Solutions of Competition and Corporation Dynamical Model of Two Enterprises
文章编号:
1000-5013(2012)03-0337-05
作者:
徐昌进
贵州财经大学贵州省经济系统仿真重点实验室
Author(s):
XU Chang-jin
Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics, Guiyang 550004, China
关键词:
企业竞争 企业合作 离散系统 动力学模型 周期解 重合度
Keywords:
enterprise competition enterprise corporation discrete dynamical model periodic solution coincidence degree
分类号:
O175
DOI:
10.11830/ISSN.1000-5013.2012.03.0337
文献标志码:
A
摘要:
研究一个两企业竞争与合作的离散动力学模型:x1(k+1)=x1(k)exp{r1(k)-a1(k)x1(k)-b1(k)×(x2(k)-c2(k))2},x2(k+1)=x2(k)exp{r2(k)-a2(k)x2(k)+b2(k)(x1(k)-c1(k))2},k∈Z的动力学行为.运用重合度及相关的延拓定理和先验估计,得到系统存在正周期解的易于检验的充分条件.
Abstract:
The dynamical behavior of a discrete competition and corporation dynamical model of two enterprises x1(k+1)=x1(k)exp{r1(k)-a1(k)x1(k)-b1(k)(x2(k)-c2(k))2},x2(k+1)=x2(k)exp{r2(k)-a2(k)x2(k)+b2(k)×(x1(k)-c1(k))2},k∈Z is investigated.By suing the coincidence degree and the related continuation theorem and prior estimates,we obtain an easily verifiable sufficient condition for the existence of positive periodic solutions.

参考文献/References:

[1] 田秀华, 聂清凯, 夏健明. 商业生态系统视角下企业互动关系模型构建研究 [J]. 南方经济, 2006(4):50-57.doi:10.1016/j.ica.2010.01.015.
[2] XU Rui, CHEN Lan-sun, HAO Fei-long. Periodic solution of a discrete time Lotka-Volterra type food-chain model with delays [J]. Applied Mathematics and Computation, 2005(1):91-103.
[3] ZHANG Ke-jun, WEN Zhao-hui. Dynamics of a discrete three species food chain system [J]. Int J Comput Math Sci, 2011(1):13-15.
[4] ZHANG R Y, CHEN Y, WU J. Periodic solutions of a single species discrete population model with periodic harvest/stock [J]. Computers and Mathematics with Applications, 2000, (1/2):77-90.
[5] ZHANG Wei-ping, ZHU De-ming, BI Ping. Multiple positive periodic solutions of a delayed discrete predator-prey system with type Ⅳ functional responses [J]. Applied Mathematics Letters, 2007, (10):1031-1038.doi:10.1016/j.aml.2006.11.005.
[6] FAN Meng, WANG Ke. Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system [J]. Mathematical and Computer Modelling, 2002, (9/10):951-961.
[7] WIENER J. Differential equations with piecewise constant delays [A]. New York:crc Press, 1984.
[8] GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equations [M]. New York:springer-verlag, 1997.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(60902044); 湖南省教育厅科研基金资助项目(10C0560); 贵州省科技厅软科学基金资助项目(黔科合R字[2011]LKC2030); 贵州省科学技术基金资助项目(黔科合J字[2012]2011); 贵州财经大学博士科研启动项目(2010年度)
更新日期/Last Update: 2014-03-23