[1]梁建莉.一类带附加装置的特殊刚体的稳定性分析[J].华侨大学学报(自然科学版),2012,33(2):225-228.[doi:10.11830/ISSN.1000-5013.2012.02.0225]
 LIANG Jian-li.Stability of a Special Rigid Body with Additional Devices[J].Journal of Huaqiao University(Natural Science),2012,33(2):225-228.[doi:10.11830/ISSN.1000-5013.2012.02.0225]
点击复制

一类带附加装置的特殊刚体的稳定性分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第2期
页码:
225-228
栏目:
出版日期:
2012-03-20

文章信息/Info

Title:
Stability of a Special Rigid Body with Additional Devices
文章编号:
1000-5013(2012)02-0225-04
作者:
梁建莉
华侨大学数学科学学院
Author(s):
LIANG Jian-li
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
特殊刚体 稳定性 Poisson结构 Hamilton函数 能量Casimir函数法
Keywords:
special rigid body stability Poisson structure Hamilton function energy Casimir function
分类号:
O317
DOI:
10.11830/ISSN.1000-5013.2012.02.0225
文献标志码:
A
摘要:
研究一类带有附加装置的特殊刚体的稳定性,通过寻找合适的Poisson结构及Hamilton函数,将刚体的运动方程转化为广义Hamilton系统.运用能量Casimir函数法分析得知,这类刚体的运动在一定条件下是稳定的.
Abstract:
In this paper,we study the stability of a special kind of rigid body with additional devices.The rigid body’s motion equations is transform into a generalized Hamilton system by means of a suitabl Poisson structure and Hamiltonian function.Through these analysis,we found that the motion of such rigid body with additional devices,under certain conditions,is stable.

相似文献/References:

[1]陈安子,苏剑雄,林健,等.胶束增溶分光光度法联合测定微量锌和铜[J].华侨大学学报(自然科学版),1983,4(1):26.[doi:10.11830/ISSN.1000-5013.1983.01.0026]
[2]许承晃.掺杂KCl激光晶体族与色心族[J].华侨大学学报(自然科学版),1984,5(1):36.[doi:10.11830/ISSN.1000-5013.1984.01.0036]
[3]林云山.一种新型的折迭腔气体激光器[J].华侨大学学报(自然科学版),1988,9(1):16.[doi:10.11830/ISSN.1000-5013.1988.01.0016]
 Lin Yunshan.A New Folded Cavity Gas Laser[J].Journal of Huaqiao University(Natural Science),1988,9(2):16.[doi:10.11830/ISSN.1000-5013.1988.01.0016]
[4]陈子文,杨卫东.积屑瘤的稳定性与显微裂纹[J].华侨大学学报(自然科学版),1991,12(2):190.[doi:10.11830/ISSN.1000-5013.1991.02.0190]
 Chen Ziwen,Yang Weidong.The Stability of Built-up Edge(BUE)and Its Microcracks[J].Journal of Huaqiao University(Natural Science),1991,12(2):190.[doi:10.11830/ISSN.1000-5013.1991.02.0190]
[5]杜耀星.空腹支墩柱在弯矩和剪力耦合作用下的稳定性[J].华侨大学学报(自然科学版),1992,13(4):494.[doi:10.11830/ISSN.1000-5013.1992.04.0494]
 Du Yaoxing.The Stability of Hollow Buttress Pier Column Subjected to the Coupling of Bending Moment and Shearing Force[J].Journal of Huaqiao University(Natural Science),1992,13(2):494.[doi:10.11830/ISSN.1000-5013.1992.04.0494]
[6]王全义.一类高维周期系统的周期解[J].华侨大学学报(自然科学版),1994,15(4):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
 Wang Quanyi.Periodic Solutions to One Class of Higher Dimensional Periodic Systems[J].Journal of Huaqiao University(Natural Science),1994,15(2):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
[7]曹文平.高阶Schrodinger方程的一类半隐式差分格式[J].华侨大学学报(自然科学版),1995,16(4):358.[doi:10.11830/ISSN.1000-5013.1995.04.0358]
 Zeng Wenping.A Class of Semi-Implicit Difference Schemes for Schrodinger Type Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1995,16(2):358.[doi:10.11830/ISSN.1000-5013.1995.04.0358]
[8]王全义.一个造血模型周期解的稳定性[J].华侨大学学报(自然科学版),1997,18(3):219.[doi:10.11830/ISSN.1000-5013.1997.03.0219]
 Wang Quanyi.Stability of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(2):219.[doi:10.11830/ISSN.1000-5013.1997.03.0219]
[9]王全义.一类Volterra型积分微分方程的稳定性[J].华侨大学学报(自然科学版),1998,19(1):1.[doi:10.11830/ISSN.1000-5013.1998.01.0001]
 Wang Quanyi.Stability of a Class of Volterra Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),1998,19(2):1.[doi:10.11830/ISSN.1000-5013.1998.01.0001]
[10]郑兴华,曾文平.对流方程的分组显式方法[J].华侨大学学报(自然科学版),1998,19(2):111.[doi:10.11830/ISSN.1000-5013.1998.02.0111]
 Zheng Xinghua,Zeng Wenping.Grouping Explicit Method for Solving Convection Equation[J].Journal of Huaqiao University(Natural Science),1998,19(2):111.[doi:10.11830/ISSN.1000-5013.1998.02.0111]

备注/Memo

备注/Memo:
国务院侨办科研基金资助项目(08QZR10)
更新日期/Last Update: 2014-03-23