[1]杨先才,丁攀峰,王燕飞.随机电磁涡旋光束传输过程中斯托克斯参量和偏振度的变化[J].华侨大学学报(自然科学版),2012,33(1):17-22.[doi:10.11830/ISSN.1000-5013.2012.01.0017]
 YANG Xian-cai,DING Pan-feng,WANG Yan-fei.Changes in Stokes Parameters and Degree of Polarization of Stochastic Electromagnetic Vortex Beams on Propagation[J].Journal of Huaqiao University(Natural Science),2012,33(1):17-22.[doi:10.11830/ISSN.1000-5013.2012.01.0017]
点击复制

随机电磁涡旋光束传输过程中斯托克斯参量和偏振度的变化()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第1期
页码:
17-22
栏目:
出版日期:
2012-01-20

文章信息/Info

Title:
Changes in Stokes Parameters and Degree of Polarization of Stochastic Electromagnetic Vortex Beams on Propagation
文章编号:
1000-5013(2012)01-0017-06
作者:
杨先才丁攀峰王燕飞
华侨大学信息科学与工程学院
Author(s):
YANG Xian-cai DING Pan-feng WANG Yan-fei
College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
电磁涡旋光束 广义斯托克斯参量 偏振度 交叉谱密度 相干长度 自由空间
Keywords:
stochastic electromagnetic vortex beam generalized stokes parameters polarization′s degree cross-spectral density free space coherence length
分类号:
TN929.11
DOI:
10.11830/ISSN.1000-5013.2012.01.0017
文献标志码:
A
摘要:
基于交叉谱密度矩阵理论及其传输规律,推导随机电磁涡旋光束在自由空间中传输时的广义斯托克斯参量和偏振度的公式,分析相干长度对广义斯托克斯参量和偏振度的影响.研究结果表明:相干长度越长,即相干度越高,光束的涡旋特性越容易保持; 随着相干长度的增加,斯托克斯参量和偏振度增加的比较缓慢; 当相干长度远大于光斑尺寸时,广义斯托克斯参量和偏振度基本保持不变.
Abstract:
Based on the theory of cross-spectral density matrix and the propagation laws of cross-spectral density,the general formulae were derived to calculate the generalized Stokes parameters and degree of polarization for a class of stochastic electromagnetic vortex beam while propagating in free space.Meanwhile,the influence on propagation of the generalized Stokes parameters and the degree of polarization by the coherence length was analyzed.It is shown that the higher the correlation length(the higher the degree of coherence)is,the better the vertical component can keep; the Stokes parameters and the degree of polarization increase more slowly with the increment of the correlation length increase; the generalized Stokes parameters and the degree of polarization keep almost invariant while the coherence length is much larger than beam size.

参考文献/References:

[1] MANDEL L, WOLF E. Optical coherence and quantum optics [M]. Cambridge:Cambridge University Press, 1995.
[2] COLLETT E. Polarized Light:Fundamentals and applications [M]. Florida:CRC Press, 1992.
[3] BORN M, WOLF E. Principles of optics [M]. Cambridge:Cambridge University Press, 2005.
[4] ALLEN L, BEIJIERSBERGENM W, SPREENUW R J C. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A, 1992, (11):8185-8189.doi:10.1103/PhysRevA.45.8185.
[5] HE H, FRIFSE M E, HECKENBBERG N R. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity [J]. Physical Review Letters, 1995(5):826-829.doi:10.1103/PhysRevLett.75.826.
[6] BOUCHALI Z, CEL ECHOVSKY R. Mixed vortex states of light as information carriers [J]. New Journal of Physics, 2004.131.doi:10.1088/1367-2630/6/1/131.
[7] WOLF E. Introduction to the theory of coherence of polarization of light [M]. Cambridge:Cambridge University Press, 2007.
[8] KOROTKOVA O, WOLF E. Generalized Stokes parameters of random electromagnetic beams [J]. Optics Letters, 2005(2):198-200.doi:10.1364/OL.30.000198.
[9] WOLF E. Unified theory of coherence and polarization of random electromagnetic beams [J]. Physics Letters A, 2003, (5/6):263-267.doi:10.1016/S0375-9601(03)00684-4.
[10] WOLF E. Correlation-induced changes in the degree of polarization, the degree of coherence, and the spectrum of random electromagnetic beams on propagation [J]. Optics Letters, 2003, (13):1078-1180.doi:10.1364/OL.28.001078.
[11] KOROTKOVA O. Conservation laws for stochastic electromagnetic free fields [J]. Journal of Optics A:Pure and Applied Optics, 2008(2):025003.doi:10.1088/1464-4258/10/2/025003.
[12] MALEEY I D, PALACIOS D M, MARATHAY A S. Spatial correlation vortices in partially coherent light theory [J]. Physical Review Letters, 2004, (11):1895-1900.
[13] CHEN Zi-yang, PU Ji-xiong. Stochastic electromagnetic vortex beam and its propagation [J]. Physics Letters A, 2008, (15):2734-2740.doi:10.1016/j.physleta.2007.12.038.
[14] RAO Lian-zhou, PU Ji-xiong. Formation of small bottle light beams [J]. Chinese Physics Letters, 2007, (12):3412-3415.
[15] GRADSTEYN I S, RYZHIK I M. Table of Integrals series and products [M]. California:Academic Press, 1980.

备注/Memo

备注/Memo:
国家自然科学基金培育项目(JB-ZR1126); 福建省厦门市科技计划项目(3502Z20113017)
更新日期/Last Update: 2014-03-23