[1]付宝英,王启志.改进型补偿模糊神经网络故障诊断系统[J].华侨大学学报(自然科学版),2012,33(1):1-5.[doi:10.11830/ISSN.1000-5013.2012.01.0001]
 FU Bao-ying,WANG Qi-zhi.Study of Fault Diagnosis System Based on Improved Compensatory Fuzzy Neural Network[J].Journal of Huaqiao University(Natural Science),2012,33(1):1-5.[doi:10.11830/ISSN.1000-5013.2012.01.0001]
点击复制

改进型补偿模糊神经网络故障诊断系统()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第1期
页码:
1-5
栏目:
出版日期:
2012-01-20

文章信息/Info

Title:
Study of Fault Diagnosis System Based on Improved Compensatory Fuzzy Neural Network
文章编号:
1000-5013(2012)01-0001-05
作者:
付宝英王启志
华侨大学机电及自动化学院
Author(s):
FU Bao-ying WANG Qi-zhi
College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
关键词:
故障诊断 模糊逻辑 神经网络 分段可变 学习速率
Keywords:
fault diagnosis fuzzy logic neural network segmentation variable learning rate
分类号:
TP183; TP277
DOI:
10.11830/ISSN.1000-5013.2012.01.0001
文献标志码:
A
摘要:
在模糊逻辑与神经网络融合的基础上,引入补偿运算单元,构成补偿模糊神经网络,使网络从初始定义的模糊规则进行训练,再动态的优化模糊规则,提高网络的容错率和稳定性.针对网络训练的不同阶段对学习速率的不同要求,提出一种具有分段可变学习速率的补偿模糊神经系统,可以提高网络的整体性能,实现动态的、全局优化的运算.故障诊断仿真研究表明:模型具有更好的收敛特性,能够大大的缩短训练时间,减少训练步数,提高误差精度.
Abstract:
On the basis of the combination of fuzzy logic and neural network,a compensatory unit is introduced to make up a compensatory fuzzy neural network,which makes the network being training from the fuzzy rules defined initially and dynamically optimizes the fuzzy rules to improve the network fault-tolerant rate and stability.In order to meet the different requirements of the learning rate for the different stages of the training,a compensation fuzzy neural network based on segmentation variable learning rate is proposed to improve the overall performance of the network and realize dynamic and globally optimal calculation.The simulation about fault diagnosis has shown the model has better convergent characteristics,greatly reduce the training time and training steps and improve the error precision.

参考文献/References:

[1] SUN Hai-rong, HAN Pu, ZHOU Li-hui. A new method to construct fuzzy systems based on rule selecting [A]. Shanghai:IEEE Press, 2004.1855-1858.
[2] 刘云辉, 李钟慎. 改进型模糊神经网络模型的构造 [J]. 华侨大学学报(自然科学版), 2010(3):256-259.
[3] 闻新, 周露, 王丹力. MATLAB神经网络应用设计 [M]. 北京:科学出版社, 2000.
[4] ZHANG Yan-qing, KANDE A. Compensatory neurofuzzy systems with fast learning algorithms [J]. IEEE Transactions on Neural Networks, 1998(1):83-105.doi:10.1109/72.655032.
[5] 雷华, 王明渝. 基于神经网络的速度估计方法 [J]. 重庆大学学报(自然科学版), 2004(2):107-110.doi:10.3969/j.issn.1000-582X.2004.02.027.
[6] 温孟振, 秦宗慧. 基于补偿模糊神经网络的核电百万千瓦级汽轮发电机的故障诊断 [J]. 机械研究与控制, 2009(6):98-103.

相似文献/References:

[1]陈俊杰,黄宜坚.利用关联维数进行液压阀故障诊断[J].华侨大学学报(自然科学版),2009,30(4):371.[doi:10.11830/ISSN.1000-5013.2009.04.0371]
 CHEN Jun-jie,HUANG Yi-jian.The Fault Diagnosis of Hydraulic Valve Based on Correlation Dimension[J].Journal of Huaqiao University(Natural Science),2009,30(1):371.[doi:10.11830/ISSN.1000-5013.2009.04.0371]
[2]李志农,刘立州.分数阶经验模态分解方法在机械故障诊断中应用[J].华侨大学学报(自然科学版),2010,31(4):367.[doi:10.11830/ISSN.1000-5013.2010.04.0367]
 LI Zhi-nong,LIU Li-zhou.Application of the Method of Fractional Empirical Mode Decomposition to Machine Fault Diagnosis[J].Journal of Huaqiao University(Natural Science),2010,31(1):367.[doi:10.11830/ISSN.1000-5013.2010.04.0367]
[3]朱明,李志农,何旭平,等.广义S变换在转子碰摩故障诊断中的应用[J].华侨大学学报(自然科学版),2014,35(2):127.[doi:10.11830/ISSN.1000-5013.2014.02.0127]
 ZHU Ming,LI Zhi-nong,HE Xu-ping,et al.Application of Generalized S-Transformation in Rotor Rub-Impact Fault Diagnosis[J].Journal of Huaqiao University(Natural Science),2014,35(1):127.[doi:10.11830/ISSN.1000-5013.2014.02.0127]
[4]叶丹丹,罗继亮.利用Petri网特征结构的故障诊断方法[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 YE Dan-dan,LUO Ji-liang.Method for Fault Diagnosis Based on Characteristic Structure of Petri Nets[J].Journal of Huaqiao University(Natural Science),2015,36(1):0.
[5]叶丹丹,罗继亮.利用Petri网特征结构的故障诊断方法[J].华侨大学学报(自然科学版),2014,35(4):378.[doi:10.11830/ISSN.1000-5013.2014.04.0378]
 YE Dan-dan,LUO Ji-liang.Method for Fault Diagnosis Using Characteristic Structure of Petri Nets[J].Journal of Huaqiao University(Natural Science),2014,35(1):378.[doi:10.11830/ISSN.1000-5013.2014.04.0378]
[6]刘竹松,陈洁.考虑数据不确定性的非均匀挖掘算法[J].华侨大学学报(自然科学版),2016,37(3):308.[doi:10.11830/ISSN.1000-5013.2016.03.0308]
 LIU Zhusong,CHEN Jie.Non-Uniform Mining Algorithm forConsidering Data Uncertainty[J].Journal of Huaqiao University(Natural Science),2016,37(1):308.[doi:10.11830/ISSN.1000-5013.2016.03.0308]
[7]李军,李佳,张世义,等.采用EEMD算法与互信息法的机械故障诊断方法[J].华侨大学学报(自然科学版),2018,39(1):7.[doi:10.11830/ISSN.1000-5013.201706091]
 LI Jun,LI Jia,ZHANG Shiyi,et al.Mechanical Fault Diagnosis Method Using EEMD Algorithm and Mutual Information Method[J].Journal of Huaqiao University(Natural Science),2018,39(1):7.[doi:10.11830/ISSN.1000-5013.201706091]

更新日期/Last Update: 2014-03-23