[1]崔晓鹏,单双荣.解四阶抛物型方程的两层高精度差分格式[J].华侨大学学报(自然科学版),2011,32(6):710-713.[doi:10.11830/ISSN.1000-5013.2011.06.0710]
 CUI Xiao-peng,SHAN Shuang-rong.High-Accurate and Two-Layer Difference Schemes for Solving Four-Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2011,32(6):710-713.[doi:10.11830/ISSN.1000-5013.2011.06.0710]
点击复制

解四阶抛物型方程的两层高精度差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第32卷
期数:
2011年第6期
页码:
710-713
栏目:
出版日期:
2011-11-20

文章信息/Info

Title:
High-Accurate and Two-Layer Difference Schemes for Solving Four-Order Parabolic Equation
文章编号:
1000-5013(2011)06-0710-04
作者:
崔晓鹏单双荣
华侨大学数学科学学院
Author(s):
CUI Xiao-peng SHAN Shuang-rong
School of Mathematics, Huaqiao University, Quanzhou 362021, China
关键词:
四阶抛物型方程 差分格式 高精度 截断误差 稳定性
Keywords:
four-order parabolic equation difference scheme high accuracy truncation error stability
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.2011.06.0710
文献标志码:
A
摘要:
对任意常数a>0的四阶抛物型方程,构造含参数的高精度两层差分格式.当参数满足一定的条件时,局部截断误差阶最高可达到O(τ2+h6),并且是绝对稳定的.特殊情况下,则为一个条件稳定的两层显格式.数值例子表明,稳定性分析是正确的.
Abstract:
A family of high-accurate and two-layer difference schemes with parameters are constructed for solving four-order parabolic equation with arbitrary constant coefficient a>0.The local truncation error can reach the order of O(τ2+h6) as the maximum when the parameters satisfy a certain condition and these difference schemes are absolutely stable.In special case,one-layer conditionally stable difference scheme is obtained.The analysis of stability is correct,as illustrated by numerical example.

参考文献/References:

[1] CAyJIbEB B K, 袁兆鼎. 抛物型方程的网格积分法 [M]. 北京:科学出版社, 1963.
[2] 余德浩, 汤华中. 偏微分方程数值解法 [M]. 北京:科学出版社, 2007.
[3] 金相华, 曾文平. 解四阶抛物型方程的若干新差分格式 [J]. 华侨大学学报(自然科学版), 2006(3):238-240.doi:10.3969/j.issn.1000-5013.2006.03.004.
[4] 曾文平. 四阶抛物型方程的一族高精度恒稳差分格式 [J]. 华侨大学学报(自然科学版), 2003(3):245-248.doi:10.3969/j.issn.1000-5013.2003.03.004.
[5] 单双荣. 解四阶抛物型方程的高精度差分格式 [J]. 华侨大学学报(自然科学版), 2005(1):19-22.doi:10.3969/j.issn.1000-5013.2005.01.005.
[6] 林鹏程. 解四阶抛物型方程的绝对稳定高精度差分格式 [J]. 厦门大学学报(自然科学版), 1994(6):756-759.
[7] 曾文平. 高阶抛物型方程的一族高精度恒稳差分格式 [J]. 计算数学, 2003(3):347-354.doi:10.3321/j.issn:0254-7791.2003.03.009.

相似文献/References:

[1]梁敏.带耗散的气体动力学方程组的广义解存在性定理[J].华侨大学学报(自然科学版),1985,6(4):376.[doi:10.11830/ISSN.1000-5013.1985.04.0376]
 Liang Min.The Existent Theorems of Generalized Solutions for the Systems of Gas Dynamics with Dissipation[J].Journal of Huaqiao University(Natural Science),1985,6(6):376.[doi:10.11830/ISSN.1000-5013.1985.04.0376]
[2]曹文平.高阶Schrodinger方程的一类半隐式差分格式[J].华侨大学学报(自然科学版),1995,16(4):358.[doi:10.11830/ISSN.1000-5013.1995.04.0358]
 Zeng Wenping.A Class of Semi-Implicit Difference Schemes for Schrodinger Type Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1995,16(6):358.[doi:10.11830/ISSN.1000-5013.1995.04.0358]
[3]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
 Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(6):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[4]曾文平.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
 Zeng Wenping.Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1997,18(6):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
[5]曾文平.对流方程的一类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(3):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
 Zeng Wenping.A Class of New Steady Difference Schemes for Convective Equation[J].Journal of Huaqiao University(Natural Science),1997,18(6):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
[6]曾文平.四阶抛物型方程两类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(4):334.[doi:10.11830/ISSN.1000-5013.1997.04.0334]
[7]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(6):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[8]陈世平,曾文平.对流方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2001,22(2):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
 Chen Shiping,Zeng Wenping.A Group of Steady Schemes with High Accuracy for Solving Convective Equation[J].Journal of Huaqiao University(Natural Science),2001,22(6):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
[9]单双荣.高阶Schringer方程的显式差分格式[J].华侨大学学报(自然科学版),2002,23(1):12.[doi:10.3969/j.issn.1000-5013.2002.01.003]
 Shan Shuangrong.Explicit Difference Schemes for Solving Higher-Order Schringer Equation[J].Journal of Huaqiao University(Natural Science),2002,23(6):12.[doi:10.3969/j.issn.1000-5013.2002.01.003]
[10]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]
[11]单双荣.解四阶抛物型方程的高精度差分格式[J].华侨大学学报(自然科学版),2003,24(1):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
 Shan Shuangrong.Difference Schemes of High Accuracy for SolvingParabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(6):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
[12]单双荣.解四阶抛物型方程的高精度差分格式[J].华侨大学学报(自然科学版),2005,26(1):19.[doi:10.3969/j.issn.1000-5013.2005.01.005]
 Shan Shuangrong.Difference Schemes of High Accuracy for SolvingParabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2005,26(6):19.[doi:10.3969/j.issn.1000-5013.2005.01.005]
[13]金相华,曾文平.解四阶抛物型方程的若干新的差分格式[J].华侨大学学报(自然科学版),2006,27(3):238.[doi:10.3969/j.issn.1000-5013.2006.03.004]
 Jin Xianghua,Zeng Wenping.Several New Difference Schemes for Solving Fourth Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2006,27(6):238.[doi:10.3969/j.issn.1000-5013.2006.03.004]

备注/Memo

备注/Memo:
国家自然科学基金(青年科学基金)资助项目(11001090)
更新日期/Last Update: 2014-03-23