[1]邹黄辉,王全义.一类四阶微分方程积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2011,32(6):699-704.[doi:10.11830/ISSN.1000-5013.2011.06.0699]
 ZOU Huang-hui,WANG Quan-yi.Existence of Positive Solutions for a Class of Fourth-Order Differential Equations with Integral Boundary Value Problem[J].Journal of Huaqiao University(Natural Science),2011,32(6):699-704.[doi:10.11830/ISSN.1000-5013.2011.06.0699]
点击复制

一类四阶微分方程积分边值问题正解的存在性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第32卷
期数:
2011年第6期
页码:
699-704
栏目:
出版日期:
2011-11-20

文章信息/Info

Title:
Existence of Positive Solutions for a Class of Fourth-Order Differential Equations with Integral Boundary Value Problem
文章编号:
1000-5013(2011)06-0699-06
作者:
邹黄辉王全义
华侨大学数学科学学院
Author(s):
ZOU Huang-hui WANG Quan-yi
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
正解 积分边值问题 微分方程 不动点理论
Keywords:
cone positive solutions integral boundary value problem differential equations fixed point theorem
分类号:
O175.8
DOI:
10.11830/ISSN.1000-5013.2011.06.0699
文献标志码:
A
摘要:
利用锥压缩锥拉伸不动点定理及一些分析技巧,建立一类四阶非线性微分方程的积分边值问题存在一个及多个正解的充分条件,推广和改进ZHANG Xue-mei等人的研究结果.
Abstract:
By employing the cone compression and the extension fixed point theorem and some analytical skills,we establish the sufficient conditions for the existence of one and multiple positive solutions for nonlinear boundary-value problems of fourth-order differential equations with integral boundary conditions,our results generalize and improve ZHANG Xue-mei et al’s results.

参考文献/References:

[1] ZHANG Xue-mei, GE Wei-gao. Positive solutions for a class of boundary-value problems with integral boundary conditions [J]. Computers and Mathematics with Applications, 2009(2):203-215.
[2] EDSON A, TO F M, MAURICIO L P. Monotone positive solutions for a fourth order equation with nonlinear boundary conditions [J]. Nonlinear Analysis-Theory Methods and Applications, 2009(9):3834-3481.
[3] CUI Yu-jun, ZOU Yu-mei. Existence and uniqueness theorems for fourth-order singular boundary value problems [J]. Computers and Mathematics with Applications, 2009(7):1449-1456.
[4] 刘进生, 张福伟, 王淑丽. 四阶方程两点边值问题变号解的存在性 [J]. 应用泛函分析学报, 2007(4):366-370.
[5] 张兴秋. 奇异四阶积分边值问题正解存在唯一性 [J]. 应用数学学报, 2010(1):38-50.
[6] MA Hui-li. Symmetric positive solutions for nonlocal boundary value problems of fourth order [J]. Nonlinear Analysis-Theory Methods and Applications, 2008(3):645-651.
[7] MA Ru-yun, XU Jia. Bifurcation from interval and positive solutions of a nonlinear fourth-order boundary value problem [J]. Nonlinear Analysis-Theory Methods and Applications, 2010(1):113-121.
[8] MA Ru-yun. Existence of positive solutions of a fourth-order boundary value problem [J]. Applied Mathematics and Computation, 2005, (2):1219-1231.doi:10.1016/j.amc.2004.10.014.
[9] GUPTA C P. Existence and uniqueness theorem for the bending of an elastic beam equation [J]. Applicable Analysis, 1988(4):289-304.
[10] LIU B. Positive solutions of fourth-order two point boundary value problems [J]. Applied Mathematics and Computation, 2004, (2):407-420.doi:10.1016/S0096-3003(02)00857-3.
[11] ZHAO Z. A necessary and sufficient condition for the existence of positive solutions of singular boundary value problems [J]. Applied Mathematics and Computation, 2005.1219-1231.
[12] 曹君燕, 王全义. 一类二阶微分方程两点边值问题的正解的存在 [J]. 华侨大学学报(自然科学版), 2010(1):113-117.
[13] 郭大均. 非线性范函分析 [M]. 济南:山东科学技术出版社, 2002.286-330.

相似文献/References:

[1]曹君艳,王全义.一类二阶微分方程两点边值问题的正解存在性[J].华侨大学学报(自然科学版),2010,31(1):113.[doi:10.11830/ISSN.1000-5013.2010.01.0113]
 CAO Jun-yan,WANG Quan-yi.The Existence of Positive Solutions for Second-Order Two-Point Boundary Value Problem[J].Journal of Huaqiao University(Natural Science),2010,31(6):113.[doi:10.11830/ISSN.1000-5013.2010.01.0113]
[2]林秋莲,王全义.一类二阶奇异微分方程三点积分边值问题的正解[J].华侨大学学报(自然科学版),2012,33(2):212.[doi:10.11830/ISSN.1000-5013.2012.02.0212]
 LIN Qiu-lian,WANG Quan-yi.Positive Solutions of Three-Point Integral Boundary Value Problems for A Kind of Second-Order Singular Differential Equations[J].Journal of Huaqiao University(Natural Science),2012,33(6):212.[doi:10.11830/ISSN.1000-5013.2012.02.0212]
[3]邹黄辉,王全义.非线性奇异三阶两点边值问题单调正解的存在性[J].华侨大学学报(自然科学版),2012,33(6):699.[doi:10.11830/ISSN.1000-5013.2012.06.0699]
 ZOU Huang-hui,WANG Quan-yi.Existence on Monotone Positive Solutions for Nonlinear Singular Third Order Two-Point Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2012,33(6):699.[doi:10.11830/ISSN.1000-5013.2012.06.0699]
[4]林秋莲,王全义.一类具有积分边值条件的二阶奇异微分方程正解的存在性[J].华侨大学学报(自然科学版),2013,34(6):696.[doi:10.11830/ISSN.1000-5013.2013.06.0696]
 LIN Qiu-lian,WANG Quan-yi.Existence of Positive Solutions for A Class of Second Order Singular Differential Equations with Nonlinear Integral Boundary Conditions[J].Journal of Huaqiao University(Natural Science),2013,34(6):696.[doi:10.11830/ISSN.1000-5013.2013.06.0696]
[5]王全义,邹黄辉.一类n阶非线性三点边值问题单调正解的存在性[J].华侨大学学报(自然科学版),2014,35(3):344.[doi:10.11830/ISSN.1000-5013.2014.03.0344]
 WANG Quan-yi,ZOU Huang-hui.Monotone Positive Solutions for A Class of nth Order Nonlinear Three-Point Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2014,35(6):344.[doi:10.11830/ISSN.1000-5013.2014.03.0344]
[6]薛雷.一类常微分方程的数值解法[J].华侨大学学报(自然科学版),2017,38(1):131.[doi:10.11830/ISSN.1000-5013.201701026]
 XUE Lei.Numerical Solution for Class of Ordinary Differential Equations[J].Journal of Huaqiao University(Natural Science),2017,38(6):131.[doi:10.11830/ISSN.1000-5013.201701026]
[7]陈应生,汪东树.一阶非线性脉冲微分方程两点边值问题的正解[J].华侨大学学报(自然科学版),2013,34(1):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
 CHEN Ying-sheng,WANG Dong-shu.Positive Solutions of Impulsive Boundary Value Problems for First-Order Two-Point Nonlinear Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(6):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
[8]陈东晓,陈应生.二阶微分方程积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2013,34(5):586.[doi:10.11830/ISSN.1000-5013.2013.05.0586]
 CHEN Dong-xiao,CHEN Ying-sheng.Existence Positive Solutions of Boundary Value Problems for Second Order Differential Equations with Integral Conditions[J].Journal of Huaqiao University(Natural Science),2013,34(6):586.[doi:10.11830/ISSN.1000-5013.2013.05.0586]
[9]王全义,邹黄辉.一类四阶奇异非线性积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2014,35(1):112.[doi:10.11830/ISSN.1000-5013.2014.01.0112]
 WANG Quan-yi,ZOU Huang-hui.Existence of Positive Solutions for a Class of Fourth-Order Singular Nonlinear Integral Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2014,35(6):112.[doi:10.11830/ISSN.1000-5013.2014.01.0112]

备注/Memo

备注/Memo:
国务院侨办科研基金资助项目(09QZR10)
更新日期/Last Update: 2014-03-23