[1]施慧华.B-统计收敛与收敛的关系[J].华侨大学学报(自然科学版),2011,32(5):597-600.[doi:10.11830/ISSN.1000-5013.2011.05.0597]
 SHI Hui-hua.Relationship between B-Statistical Convergence and Convergence[J].Journal of Huaqiao University(Natural Science),2011,32(5):597-600.[doi:10.11830/ISSN.1000-5013.2011.05.0597]
点击复制

B-统计收敛与收敛的关系()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第32卷
期数:
2011年第5期
页码:
597-600
栏目:
出版日期:
2011-09-20

文章信息/Info

Title:
Relationship between B-Statistical Convergence and Convergence
文章编号:
1000-5013(2011)05-0597-04
作者:
施慧华
华侨大学数学科学学院
Author(s):
SHI Hui-hua
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
B-统计收敛 收敛 统计测度 Banach空间
Keywords:
B-statistical convergence convergence statistical measure Banach space
分类号:
O189.13
DOI:
10.11830/ISSN.1000-5013.2011.05.0597
文献标志码:
A
摘要:
利用B-统计收敛说明统计收敛、A-统计收敛、缺项统计收敛、λ-统计收敛及强统计收敛分别是B-统计收敛的特殊形式,并分别给予测度刻画.考察B-统计收敛与一般序列收敛之间的关系,得到统计收敛、λ-统计收敛及强统计收敛与收敛之间的等价描述.
Abstract:
Applying B-convergence,we first show that statistical convergence,A-statistical convergence,lacunary statistical convergence,λ-statistical convergence and strongly statistical convergence are just the specific types of B-convergence,and present the representation of these several classical statistical convergence by using measure theory.By establishing the relationship between B-statistical convergence and convergence,we give the equivalent description between statistical convergence,λ-statistical convergence,strongly statistical convergence and convergence.

参考文献/References:

[1] FAST H. Sur le convergence statistical [J]. Colloquium Mathematicum, 1951(2):241-244.
[2] CHENG Li-xin, LIN Guo-chen, LAN Yong-yi. Measure theory of statistical convergence [J]. Science China(Mathematics), 2008, (12):2285-2303.
[3] CHENG Li-xin, LIN Guo-chen, SHI Hui-hua. On real-valued measures of statistical type and their applications to statistical convergence [J]. Mathematical and Computer Modelling, 2009, (1/2):116-122.doi:10.1016/j.mcm.2009.04.004.
[4] KOLK E. Inclusion relations between the statistical convergence and strong summability [J]. Acta et Comm Univ Tartu Math, 1998(2):39-54.
[5] FRIDY J A. On statistical convergence [J]. Analysis, 1985(4):301-313.
[6] BALá?V, ?ALáT T. Uniform density u and corresponding Iu-convergence [J]. Mathematical Communications, 2006, (11):1-7.

相似文献/References:

[1]陈恒新.弱对角占优矩阵的Jacobi和Gauss-Seidel及SOR迭代法收敛准则[J].华侨大学学报(自然科学版),1989,10(3):229.[doi:10.11830/ISSN.1000-5013.1989.03.0229]
 Chen Hengxin.Convergence Criteria of Jacobi, Gauss-Seidel,and SOR Iteration Methods in Weak Diagonally Dominant Matrix[J].Journal of Huaqiao University(Natural Science),1989,10(5):229.[doi:10.11830/ISSN.1000-5013.1989.03.0229]
[2]陈恒新.严格对角占优矩阵的SOR法收敛性和误差估计式[J].华侨大学学报(自然科学版),1991,12(2):141.[doi:10.11830/ISSN.1000-5013.1991.02.0141]
 Chen Hengxin.SOR-method Convergence and Error Estimate Formulain Strictly Diagonally Dominant Matrix[J].Journal of Huaqiao University(Natural Science),1991,12(5):141.[doi:10.11830/ISSN.1000-5013.1991.02.0141]
[3]黄胜好.重调和方程的一种非协调有限元解法[J].华侨大学学报(自然科学版),1992,13(3):302.[doi:10.11830/ISSN.1000-5013.1992.03.0302]
 Huang Shenghao,Department of,Management Information,et al.A Nonconforming Finite Element Solution of the Biharmonic Equation[J].Journal of Huaqiao University(Natural Science),1992,13(5):302.[doi:10.11830/ISSN.1000-5013.1992.03.0302]
[4]陈恒新.关于TOR法的敛散性[J].华侨大学学报(自然科学版),1993,14(3):295.[doi:10.11830/ISSN.1000-5013.1993.03.0295]
 Chen Hengxin.On the Convergence and the Divergence of TOR Method[J].Journal of Huaqiao University(Natural Science),1993,14(5):295.[doi:10.11830/ISSN.1000-5013.1993.03.0295]
[5]陈恒新.AOR迭代法收敛判别准则[J].华侨大学学报(自然科学版),1994,15(1):14.[doi:10.11830/ISSN.1000-5013.1994.01.0014]
 Chen Hengxin.Convergence Criterion for AOR Iteration Method[J].Journal of Huaqiao University(Natural Science),1994,15(5):14.[doi:10.11830/ISSN.1000-5013.1994.01.0014]
[6]王占锋,杜海莲,安素芳,等.求解车辆路径问题的改进蚁群算法[J].华侨大学学报(自然科学版),2013,34(1):36.[doi:10.11830/ISSN.1000-5013.2013.01.0036]
 WANG Zhan-feng,DU Hai-lian,AN Su-fang,et al.An Improved Ant Colony Algorithm Based on Vehicle Routing Problem[J].Journal of Huaqiao University(Natural Science),2013,34(5):36.[doi:10.11830/ISSN.1000-5013.2013.01.0036]

备注/Memo

备注/Memo:
华侨大学高层次人才科研启动项目(10BS215)
更新日期/Last Update: 2014-03-23